精英家教网 > 高中数学 > 题目详情
13.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面 ADEF与平面ABCD垂直,M为ED的中点,如图2.

(1)求证:AM∥平面BEC;
(2)求平面 EBC与平面ABCD夹角的余弦值.

分析 (1)取EC中点N,连结MN,BN,推导出四边形ABNM为平行四边形,从而BN∥AM,由此能证明AM∥平面BEC.
(2)推导出ED⊥AD,ED⊥BC,从而BC⊥平面BDE,进而∠EBD是平面EBC与平面ABCD夹角的平面角,由此能求出平面 EBC与平面ABCD夹角的余弦值.

解答 证明:(1)取EC中点N,连结MN,BN,
在△EDC中,M,N分别为ED,EC的中点,
∴MN∥CD,且MN=$\frac{1}{2}CD$,
∵AB∥CD,AB=$\frac{1}{2}$CD,∴MN∥AB,且MN=AB,
∴四边形ABNM为平行四边形,∴BN∥AM,
又BN?平面BEC,且AM?平面BEC,
∴AM∥平面BEC.
解:(2)在正方形ADEF中,ED⊥AD,
又平面ADEF与平面ABCD垂直且交线为AD,
由面面垂直的性质定理,得ED⊥平面ABCD,∴ED⊥BC,
在直角梯形ABCD中,AB⊥AD,且AB=AD=$\frac{1}{2}CD=1$,∴BC=$\sqrt{2}$,
在△BCD中,BD=BC=$\sqrt{2}$,CD=2,∴BD2+BC2=CD2
∴BC⊥BD,又ED⊥BC,∴BC⊥平面BDE,
∴∠EBD是平面EBC与平面ABCD夹角的平面角,
在直角DEB中,tan$∠EBD=\frac{DE}{DB}$=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,
∴cos$∠EBD=\frac{\sqrt{6}}{3}$,
∴平面EBC与平面ABCD夹角的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查线面平行的证明,考查面面夹角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.将极坐标(2,$\frac{3π}{2}$)化为直角坐标为(0,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.新定义运算:$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则满足$|\begin{array}{l}{i}&{z}\\{-1}&{z}\end{array}|$=2的复数z是(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若关于x的不等式x+$\frac{4}{x}$≥a对于一切x∈(0,+∞)恒成立,则实数a的取值范围是(  )
A.(-∞,5]B.(-∞,4]C.(-∞,2]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=3sin(2x-$\frac{π}{3}}$),x∈R.
(1)求f(${\frac{π}{4}}$)的值;
(2)设α∈(0,$\frac{π}{2}}$),β∈(${\frac{π}{2}$,π),f(${\frac{2π}{3}$-$\frac{α}{2}}$)=$\frac{9}{5}$,f(${\frac{β}{2}$+$\frac{5π}{12}}$)=-$\frac{36}{13}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知四棱锥P-ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O为AD边的中点,点M在线段PC上.
(1)证明:平面POB⊥平面PAD;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,PA∥平面MOB,求四棱锥M-BODC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA=$\sqrt{3}$,AB=1,AD=2,∠BAD=120°,E,G,H分别是BC,PC,AD的中点.
(1)求证:PH∥平面GED;
(2)求二面角G-ED-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-3|+|2x+t|,t∈R.
(1)当t=1时,解不等式f(x)≥5;
(2)若存在实数a满足f(a)+|a-3|<2,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{cosx}{sinx+\sqrt{2}}$(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])的单调递减区间是(-$\frac{π}{4}$,$\frac{π}{2}$].

查看答案和解析>>

同步练习册答案