精英家教网 > 高中数学 > 题目详情
f(x)=log2(x2-5x+6)的单调增区间为
 
考点:复合函数的单调性
专题:函数的性质及应用
分析:令t=x2-5x+6>0,求得函数的定义域,且f(x)=g(t)=log2t,根据复合函数的单调性,本题即求函数t在定义域内的增区间.再利用二次函数的性质可得函数t在定义域内的增区间.
解答: 解:令t=x2-5x+6>0,求得 x<2,或x>3,
故函数的定义域为(-∞,2)∪(3,+∞),
且f(x)=g(t)=log2t,
根据复合函数的单调性,本题即求函数t在定义域内的增区间.
利用二次函数的性质可得函数t在定义域(-∞,2)∪(3,+∞)内的增区间为(3,+∞),
故答案为:(3,+∞).
点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在复平面内,O是原点,向量
OA
对应的复数是2+i.
(1)如果点A关于实轴的对称点为B,求向量
OB
对应的复数;
(2)如果(1)中点B关于虚轴的对称点为C,求点C对应的复数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx在x=2处取得极值4,且其导函数y=f′(x)的图象经过坐标原点.
(1)求函数y=f(x)的解析式;
(2)若x∈[-3,3],求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,E、F分别是腰AD、BC的中点,M在线段EF上,且EM=2MF,下底是上底的2倍,若
AB
=
a
BC
=
b
,用
a
b
表示
AM

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠C=30°,∠B=90°,D为AC中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起至△PBD,使∠PDC=90°.

(Ⅰ)求证:PF⊥平面BCD;
(Ⅱ)求直线PC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果复数(1+i)(1+mi)是实数,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列{an}是等积数列,且a1=3,公积为15,那么a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
AM
=
1
4
AB
+
3
4
AC
,则△ABM与△ABC的面积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+
f(x)
x
>0,若a=
1
2
f(
1
2
)
,b=-2f(-2),c=ln
1
2
f(ln2),则a,b,c的大小关系是
 

查看答案和解析>>

同步练习册答案