| A. | $({0,\frac{{\sqrt{3}}}{3}})$ | B. | $({0,\frac{{\sqrt{3}}}{3}}]$ | C. | $({\frac{{\sqrt{3}}}{3},1})$ | D. | $[{\frac{{\sqrt{3}}}{3},1})$ |
分析 设点P($\frac{{a}^{2}}{c}$,m),则由中点公式可得线段PF1的中点K的坐标,根据 线段PF1的斜率与 KF2的斜率之积等于-1,求出m2的解析式,再利用 m2≥0,得到3e4+2e2-1≥0,求得e的范围,再结合椭圆离心率的范围进一步e的范围.
解答 解:由题意得F1(-c,0)),F2(c,0),设点P($\frac{{a}^{2}}{c}$,m),
则由中点公式可得线段PF1的中点K($\frac{{a}^{2}-{c}^{2}}{2c}$,$\frac{m}{2}$),
∴线段PF1的斜率与 KF2的斜率之积等于-1,
∴$\frac{m-0}{\frac{{a}^{2}}{c}+c}$•$\frac{\frac{m}{2}-0}{\frac{{a}^{2}-{c}^{2}}{2c}-c}$=-1,
∴m2=-($\frac{{a}^{2}}{c}$+c)•($\frac{{a}^{2}}{c}$-3c)≥0,∴a4-2a2c2-3c4≤0,
∴3e4+2e2-1≥0,∴e2≥$\frac{1}{3}$,或e2≤-1(舍去),
∴e≥$\frac{\sqrt{3}}{3}$.
又椭圆的离心率0<e<1,故$\frac{\sqrt{3}}{3}$≤e<1,
故选:D.
点评 本题考查线段的中点公式,两直线垂直的性质,以及椭圆的简单性质的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | log76<log67 | B. | 1.013.4>1.013.5 | C. | 3.50.3<3.40.3 | D. | log0.44<log0.46 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 2$\sqrt{11}$ | C. | 2$\sqrt{15}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值为2,周期是π | B. | 最大值为2,周期是2π | ||
| C. | 最大值为$\sqrt{2}$,周期是π | D. | 最大值为$\sqrt{2}$,周期是2π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0) | B. | (-2,0] | C. | (-∞,0] | D. | (-∞,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com