精英家教网 > 高中数学 > 题目详情
15.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两焦点为F1(-c,0)、F2(c,0),P为直线$x=\frac{a^2}{c}$上一点,F1P的垂直平分线恰过F2点,则e的取值范围为(  )
A.$({0,\frac{{\sqrt{3}}}{3}})$B.$({0,\frac{{\sqrt{3}}}{3}}]$C.$({\frac{{\sqrt{3}}}{3},1})$D.$[{\frac{{\sqrt{3}}}{3},1})$

分析 设点P($\frac{{a}^{2}}{c}$,m),则由中点公式可得线段PF1的中点K的坐标,根据 线段PF1的斜率与 KF2的斜率之积等于-1,求出m2的解析式,再利用 m2≥0,得到3e4+2e2-1≥0,求得e的范围,再结合椭圆离心率的范围进一步e的范围.

解答 解:由题意得F1(-c,0)),F2(c,0),设点P($\frac{{a}^{2}}{c}$,m),
则由中点公式可得线段PF1的中点K($\frac{{a}^{2}-{c}^{2}}{2c}$,$\frac{m}{2}$),
∴线段PF1的斜率与 KF2的斜率之积等于-1,
∴$\frac{m-0}{\frac{{a}^{2}}{c}+c}$•$\frac{\frac{m}{2}-0}{\frac{{a}^{2}-{c}^{2}}{2c}-c}$=-1,
∴m2=-($\frac{{a}^{2}}{c}$+c)•($\frac{{a}^{2}}{c}$-3c)≥0,∴a4-2a2c2-3c4≤0,
∴3e4+2e2-1≥0,∴e2≥$\frac{1}{3}$,或e2≤-1(舍去),
∴e≥$\frac{\sqrt{3}}{3}$.
又椭圆的离心率0<e<1,故$\frac{\sqrt{3}}{3}$≤e<1,
故选:D.

点评 本题考查线段的中点公式,两直线垂直的性质,以及椭圆的简单性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,在△ABC中,AD⊥AB,$\overrightarrow{BC}=2\sqrt{3}\overrightarrow{BD}$,$|{\overrightarrow{AD}}|=1$,则$\overrightarrow{AC}•\overrightarrow{AD}$=(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列式子中成立的是(  )
A.log76<log67B.1.013.4>1.013.5C.3.50.3<3.40.3D.log0.44<log0.46

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点P是圆C:x2+y2-8x-8y+28=0上任意一点,曲线N:x2+4y2=4与x轴交于A,B两点,直线OP与曲线N交于点M,记直线MA,MB,OP的斜率分别为k1,k2,k3,则k1•k2•k3的取值范围是[$-\frac{4+\sqrt{7}}{12},-\frac{4-\sqrt{7}}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在四面体ABCD中,已知AD⊥BC,AD=6,BC=2,且$\frac{AB}{BD}$=$\frac{AC}{CD}$=2,则V四面体ABCD的最大值为(  )
A.6B.2$\sqrt{11}$C.2$\sqrt{15}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在y轴上的截距为-3,且倾斜角为150°角的直线方程是$y=-\frac{{\sqrt{3}}}{3}x-3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点A是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若${S_{△IA{F_1}}}=2\sqrt{2}{S_{△I{F_1}{F_2}}}-{S_{△IA{F_2}}}$,则该椭圆的离心率为(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=sin2x+2sinxcosx+3cos2x-2,x∈R,下列判断正确的是(  )
A.最大值为2,周期是πB.最大值为2,周期是2π
C.最大值为$\sqrt{2}$,周期是πD.最大值为$\sqrt{2}$,周期是2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若不等式(a-1)x2+2(a-2)x-4<0对于x∈R恒成立,则的取值范围是(  )
A.(-2,0)B.(-2,0]C.(-∞,0]D.(-∞,0)

查看答案和解析>>

同步练习册答案