精英家教网 > 高中数学 > 题目详情
(x-
1
x
)6
的展开式的中间一项是
 
考点:二项式定理的应用
专题:二项式定理
分析:由于展开式共有7项,故展开式的中间一项为第四项,再根据二项展开式的通项公式求得该项的系数.
解答: 解:由于展开式共有7项,故展开式的中间一项为T4=
C
3
6
x6-3(-
1
x
)3=-
C
3
6
=-20

故答案为:-20.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-mx-2=0在x∈[0,1]有解;命题q:f(x)=log2(x2-2mx+
1
2
)在x∈[1,+∞)单调递增;若?p为真命题,p∨q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的离心率为
2
2
,且过点P(
2
2
1
2
),求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
(1)请你判断所画四边形的性状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,-
1
2
)和(m-b,m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.
(1)求c的值;
(2)设抛物线y=ax2+bx+c与x轴的两个交点是(x1,0)和(x2,0),求x1x2的值;
(3)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(xo,yo ),
求这时|yo|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b-c=
1
4
a,2sinB=3sinC,则cosA=(  )
A、-
1
4
B、
1
4
C、
7
8
D、
11
16

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l过点A(0,a),斜率为1,圆x2+y2=4上恰有1个点到l的距离为1,则a的值为(  )
A、3
2
B、±3
2
C、±2
D、±
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x-x2的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是定义在(1,4)上单调递减函数,且f(t2)-f(t)<0,求t的取值范围.

查看答案和解析>>

同步练习册答案