精英家教网 > 高中数学 > 题目详情
3.函数y=sinx-$\sqrt{3}$cosx+1的值域为[-1,3].

分析 由条件利用两角和的正弦公式求得函数的解析式,再利用正弦函数的值域求得f(x)的值域.

解答 解:函数y=sinx-$\sqrt{3}$cosx+1=2($\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx)+1=2sin(x-$\frac{π}{3}$)+1,
故函数的值域为[-1,3],
故答案为:[-1,3].

点评 本题主要考查两角和的正弦公式、正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合M={x|x2<(a+1)x},N={x|x2+2x-3≤0},若M⊆N,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.A,B两人下棋,A获胜的概率为30%,两人下成和棋的概率为20%,那么A不输的概率为0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-3≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,则z=2x+y的取值范围是[-5,11].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设X为随机变量,X~B (n,$\frac{1}{3}$),若随机变量X的数学期望E(X)=2,则P(X=2)等于(  )
A.$\frac{80}{243}$B.$\frac{13}{243}$C.$\frac{4}{243}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=-2x2+4x在区间[m,n]上的值域是[-6,2],则m+n的取值所组成的集合为(  )
A.[0,3]B.[0,4]C.[-1,3]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是某三棱锥的三视图,则该三棱锥的表面积为(  )
A.4+$\sqrt{7}+\sqrt{3}$B.6+$\sqrt{7}$C.4+$\sqrt{7}$D.6+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且8Sn=(an+2)2,bn=$\frac{1}{2}$anλn-1(λ>0,λ∈R).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)若不等式(1-λ)Tn+λbn≥2λn对任意的n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$]
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.

查看答案和解析>>

同步练习册答案