精英家教网 > 高中数学 > 题目详情
有一条光线从点A(-2,1)出发,经x轴反射后经过点B(3,4),求:
(1)反射光线所在直线的方程.
(2)反射光线所在直线是否平分圆x2+y2-10x-12y+60=0?
考点:直线与圆的位置关系,与直线关于点、直线对称的直线方程
专题:直线与圆
分析:(1)求得点A关于x轴的对称点为A′的坐标,根据光的照射原理可知:A′B为反射光线,由两点式可得反射光线的方程.
(2)根据圆心的坐标(5,6)适合反射光线所在直线的方程x-y+1=0,可得反射光线所在直线经过圆心,从而得出结论.
解答: 解:(1)点A(-2,1)关于x轴的对称点为A′(-2,-1),
根据光的照射原理可知:A′B为反射光线,
由两点式可得反射光线的方程为:
y+1
4+1
=
x+2
3+2

即反射光线所在直线的方程为:x-y+1=0.
(2)圆的方程x2+y2-10x-12y+60=0变形为(x-5)2+(y-6)2=1,
则圆的圆心为(5,6),经检验,圆心的坐标(5,6)适合反射光线所在直线的方程x-y+1=0,
即反射光线所在直线经过圆心,所以反射光线所在直线平分圆.
点评:本题主要考查用两点式求直线的方程,反射定理的应用,直线和圆的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

中心在原点,焦点在x轴上的椭圆C的焦距为2,两准线间的距离为10.设A(5,0),过点A作直线l交椭圆C于P,Q两点,过点P作x轴的垂线交椭圆C于另一点S.
(1)求椭圆C的方程;
(2)求证直线SQ过x轴上一定点B;
(3)若过点A作直线与椭圆C只有一个公共点D,求过B,D两点,且以AD为切线的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C对边的长,且满足
cosB-b
cosC+2a+c
=-
b
2a+c

(1)求角B的值.
(2)若b=7,a+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),圆心在坐标原点,半径为
ab
a2+b2
的圆C1定义为椭圆C的“友好圆”.若椭圆C的离心率为e=
6
3
,且其短轴上的一个端点到右焦点F的距离为
3

(1)求椭圆C的方程及其“友好圆”圆C1的方程.
(2)过椭圆中心O的两条弦PR与QS互相垂直,试探讨四边形PQRS与圆C1的位置关系;
(3)在(2)条件下,求四边形PQRS面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,O为坐标原点,点P(-1,
2
2
)在椭圆上,且椭圆的离心率为
2
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)⊙O是以F1F2为直径的圆,直线l:y=kx+m与⊙O相切,且与椭圆交于不同的两点A、B.当
OA
OB
=λ,且
2
3
≤λ≤
3
4
,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1+cos2x
4sin(
π
2
+x)
-asin
x
2
cos(π-
x
2
)的最大值为1,试确定常数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设计两种求2+4+6+…+2n的值的不同算法并编写程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名男同学中选出2人,5名女同学中选出3人,并将选出的5人排成一排,共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①函数y=tanx的图象关于点(kπ+
π
2
,0)(k∈Z)对称;
②函数f(x)=sin|x|是最小正周期为π的周期函数;
③函数y=cos2x+sinx的最小值为-1;
④设θ为第二象限的角,则tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2

⑤若θ为第三象限的角,则点P(sin(cosθ),cos(cosθ))在第二象限.
其中正确的命题序号是
 

查看答案和解析>>

同步练习册答案