精英家教网 > 高中数学 > 题目详情
设数列{an}为等差数列,前n项和为Sn,已知a2=2,S5=15.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=an•2n,求数列{bn}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)根据a2=2,S5=15,列出方程,求出等差数列{an}的首项和公差,然后求出an即可;
(2)根据题意,首先求出数列{bn}的通项bn,然后根据等比数列的求和公式,求出此数列的前n项和Gn即可.
解答: 解:(1)∵
a2=2
S5=15

a1+d=2
5a1+
1
2
•5•4d=15

a1=1
d=1

∴an=1+(n-1)=n,
即an=n.
(2)∵bn=an•2n,an=n
∴bn=n•2n
数列{bn}的前n项和Tn=1•21+2•22+3•23+…+n•2n
∴2Tn=1•22+2•23+3•24+…+(n-1)•2n+n•2n+1
Tn-2Tn=21+22+23+…+2n-n2n+1=2n+1-2-n2n+1
∴Tn=(n-1)2n+1+2.
点评:本题主要考查了等差数列的通项公式,错位相减法求数列的和的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex-ln(x+1).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知0≤x1<x2.求证:ex2-x1>ln
e(x2+1)
x1+1

(Ⅲ)设g(x)=ex-
x
x+1
lnx-f(x),证明:对任意的正实数a,总能找到实数m(a),使g[m(a)]<a成立.注:e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题甲:函数f(x)=x2+(a-1)x+a2在实数集R上没有零点;命题乙:函数f(x)=(2a2-a)x在R上是增函数.若甲、乙中有且只有一个真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an+1=
an
2an+1
(n∈N*).
(1)求证{
1
an
}
是等差数列;(要指出首项与公差);
(2)求数列{an}的通项公式;
(3)若Tn=a1a2+a2a3+…+anan+1,求证:Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}是递增数列,前n项和为Sn,且a1,a3,a9成等比数列,S5=a52
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=
n2+n+1
anan+1
,求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

近日我渔船编队在钓鱼岛附近点A周围海域作业,在B处的海监15船测得A在其南偏东45°方向上,测得渔政船310在其北偏东15°方向上,且与B的距离为4
3
海里的C处.某时刻,海监15船发现日本船向在点A周围海域作业的我渔船编队靠近,上级指示渔政船310立刻全速前往点A周围海域执法,海监15船原地监测.渔政船310走到B正东方向D处时,测得距离B为4
2
海里.若渔政船以23海里/小时的速度航行,求其到达点A所需的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,
3
),
b
=(3,m).
(Ⅰ)若
a
b
,求|
b
|;   
(Ⅱ)若向量
a
b
的夹角为
π
6
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是首项为1,公比为2的等比数列,则a1+|a2|+a3+|a4|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在不等边△ABC中,三个内角∠A,∠B,∠C所对的边分别为a,b,c,只有
cosA
cosB
=
b
a
,则角C的大小为
 

查看答案和解析>>

同步练习册答案