精英家教网 > 高中数学 > 题目详情
在不等边△ABC中,三个内角∠A,∠B,∠C所对的边分别为a,b,c,只有
cosA
cosB
=
b
a
,则角C的大小为
 
考点:正弦定理,余弦定理
专题:解三角形
分析:已知等式右边利用正弦定理化简,整理后再利用二倍角的正弦函数公式化简,得到2A与2B相等或互补,进而求出C的度数.
解答: 解:由正弦定理
a
sinA
=
b
sinB
,得到
b
a
=
sinB
sinA

代入已知等式得:
cosA
cosB
=
sinB
sinA
,即sinAcosA=sinBcosB,
整理得:
1
2
sin2A=
1
2
sin2B,即sin2A=sin2B,
∴2A=2B(此三角形为不等边三角形,舍去)或2A+2B=180°,
∴A+B=90°,
则C=90°.
故答案为:90°
点评:此题考查了正弦定理,二倍角的正弦函数公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}为等差数列,前n项和为Sn,已知a2=2,S5=15.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=an•2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中,AB=3,BC=4,将△ACD沿着AC折成120°的二面角,则B,D两点的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)满足对?x∈R,都有f(x+1)=f(-x+3),且函数f(x+1)为奇函数,如果f(0)=5,那么f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sin
23
6
π=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足
x≥0
x≤y+1
y≤1
,则z=x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在y轴上,F1,F2是椭圆的两个焦点,P为椭圆上的一个动点,若△PF1F2的周长为12,离心率e=
1
2
,则此椭圆的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的增函数,且对于任意x∈R,都有f[f(x)-2x]=3,则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
3
x+y=|a-2|
y=
9-x2
,则不等式2|1-a|-1>a(a-2)成立的概率是(  )
A、
1
4
B、
1
3
C、
2
3
D、
3
4

查看答案和解析>>

同步练习册答案