精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数且).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为

1)求直线的极坐标方程及曲线的直角坐标方程;

2)若点在直线上,点在曲线上,求证:

【答案】1;(2)证明见解析.

【解析】

1)先将直线的参数方程化为普通方程,再将直线的普通方程转化为极坐标方程,利用可将曲线的极坐标方程转化为直角坐标方程;

2)设点的坐标为,利用点到直线的距离公式以及三角函数的有界性可证明出.

1)在直线的参数方程为参数且)中消去参数,所以,直线的极坐标方程为.

曲线的极坐标方程为,即,即

转化为直角坐标方程为,即

2)曲线的参数方程为为参数),

设点的坐标为,则点到直线的距离为

因此,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两项:①到各班做宣传,倡议同学们积极捐献冬衣;②整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:

(1)如果用分层抽样的方法从参与两项工作的志愿者中抽取5人,再从这5人中选2人,那么“至少有1人是参与班级宣传的志愿者”的概率是多少?

(2)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用表示所选志愿者中的女生人数,写出随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的最大值;

2)若函数有相同极值点.

求实数的值;

若对于为自然对数的底数),不等式恒成立,

求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若处取得极值求函数的单调区间

(Ⅱ)若时函数有两个不同的零点.

的取值范围;②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的极值点;

2)设函数有两个零点,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左焦点为,且点C上.

C的方程;

设点P关于x轴的对称点为点不经过P点且斜率为k的直线lC交于AB两点,直线PAPB分别与x轴交于点MN,若,求k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面外ABC的一点PAPABAC两两互相垂直,过AC的中点DED⊥面ABC,且ED=1PA=2AC=2,连接BPBE,多面体BPADE的体积是

1)画出面PBE与面ABC的交线,说明理由;

2)求面PBE与面ABC所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列都是等差数列,.数列满足.

1)求的通项公式;

2)证明:是等比数列;

3)是否存在首项为1,公比为q的等比数列,使得对任意,都有成立?若存在,求出q的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线.

)求圆的标准方程;

)设直线经过点,且与圆相交所得弦长为,求直线的方程.

查看答案和解析>>

同步练习册答案