精英家教网 > 高中数学 > 题目详情
以椭圆
x2
4
+
y2
3
=1的左焦点为焦点,以坐标原点为顶点的抛物线方程为(  )
A、y2=-4x
B、y2=-2x
C、y2=-8x
D、y=-x
考点:椭圆的简单性质,抛物线的标准方程
专题:圆锥曲线的定义、性质与方程
分析:可设抛物线的标准方程为:y2=-2px,其焦点为(-
p
2
,0)
.由椭圆
x2
4
+
y2
3
=1,可得左焦点F(-1,0),即为抛物线的焦点,即可得出.
解答: 解:可设抛物线的标准方程为:y2=-2px,其焦点为(-
p
2
,0)

由椭圆
x2
4
+
y2
3
=1,可得左焦点F(-1,0),即为抛物线的焦点,
-
p
2
=-1
,解得p=2.
∴抛物线的方程为:y2=-4x.
故选:A.
点评:本题考查了椭圆与抛物线的标准方程及其性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知圆柱的上、下底面圆心分别为P、Q,AA1与CC1是圆柱的母线,正方形ABCD内接于下底面圆Q,AB=kAA1=2,连接PA、PB、PC.
(Ⅰ)当k=
2
时,求直线PA与平面PBC所成角的正弦值;
(Ⅱ)当k为何值时,Q点在平面PBC内的射影恰好是△PBC的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CC1的中点,求异面直线AE和BF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、曲线的切线和曲线的交点有且只有一个
B、过曲线上的一点作曲线的切线,这点一定是切点
C、若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线
D、若y=f(x)在点(x0,f(x0))处有切线,则f′(x0)不一定存在

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c满足a2+b2+c2=ab+bc+ac,则△ABC一定是(  )
A、等边三角形
B、直角三角形
C、锐角三角形
D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,是平面与平面垂直判定定理的是(  )
A、两个平面相交,如果它们所成的二面角是直二面角,那么两个平面相互垂直
B、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
C、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面
D、如果一个平面内的一条直线垂直于另一平面的两条相交直线,那么这两个平面互相垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,(
2
a-c)cosB=bcosC,cos2A+1-
8
5
cosA=0,则tan(
π
4
+A)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求过三点A(1,4),B(-2,3),C(4,-5)的圆的方程,并求这个圆的圆心坐标和半径长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,平面SCD⊥底面ABCD,底面ABCD是菱形,AD=2
3
,且SA=SD=
39
.二面角S-AD-B大小为120°
(1)求∠ADC的大小;
(2)求二面角A-SD-C的平面角的正弦值.

查看答案和解析>>

同步练习册答案