精英家教网 > 高中数学 > 题目详情
20.某几何体的三视图如图所示,在该几何体的各个面中,面积最小的面与底面的面积之比为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{4}{5}$

分析 由三视图知,该几何体是高为4的四棱锥,计算出最小面的面积与最大面是底面的面积,求出比值即可.

解答 解:由三视图可知,该几何体是高为4的四棱锥,
计算可得最小面的面积为$\frac{1}{2}$×1×4=2,
最大的是底面面积为$\frac{1}{2}$(2+4)×2-$\frac{1}{2}$×2×1=5,
所以它们的比是$\frac{2}{5}$.
故选:C.

点评 本题考查了几何体三视图的应用问题,也考查了空间想象能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),求角A,B,C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.底面为正六边形的六棱锥P-ABCDE,$\overrightarrow{PG}$=$\frac{1}{2}$$\overrightarrow{GB}$,$\overrightarrow{PH}$=$\overrightarrow{HC}$,记三棱锥G-PAH的体积为V1,三棱锥H-PAE的体积为V2,则V1:V2是$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F,定点A($\frac{5}{3}$a,0),在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是[$\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱中ABC-A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.
(Ⅰ)证明:AC1⊥平面A1BC;
(Ⅱ)求三棱锥B-A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+21nx(a∈R).
(1)当a=$\frac{2}{3}$时,求函数f(x)的单调区间;
(2)当a>$\frac{1}{2}$时,设g(x)=(x2-2x)ex.求证;对任意x1∈(0,2],均存在∈(0,2],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-2x2,a为正常数.
(1)求函数f(x)的单调区间;
(2)若对任意x1,x2∈(1,+∞),x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{16π}{9}$C.$\frac{π}{3}$D.$\frac{2π}{9}$

查看答案和解析>>

同步练习册答案