精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点与抛物线y2=12x的焦点重合,且双曲线的一条渐近线被圆(x-3)2+y2=8截得的弦长为4,则此双曲线的渐近线方程为(  )
A、y=±2x
B、y=±
2
5
5
x
C、y=±
66
3
x
D、y=±2
6
x
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出抛物线的焦点坐标,可得c=3,利用双曲线的一条渐近线被圆(x-3)2+y2=8截得的弦长为4,可得圆心到渐近线的距离为2,从而可求a,b,即可求出双曲线的渐近线方程.
解答: 解:抛物线y2=12x的焦点坐标为(3,0),
∵双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点与抛物线y2=12x的焦点重合,
∴c=3,
∵双曲线的一条渐近线被圆(x-3)2+y2=8截得的弦长为4,
∴圆心到渐近线的距离为2,
设渐近线方程为bx+ay=0,则
3b
b2+a2
=2,
∴b=2,
∴a=
5

∴双曲线的渐近线方程为y=±
2
5
5
x.
故选:B.
点评:本题考查双曲线的渐近线方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1,下面结论正确的是
 
(把你认为正确的结论序号都填上)
①AC∥平面DA1C1
②BD1⊥平面DA1C1; 
③过点B与异面直线AC和A1D所成角均为60°;  
④四面体DA1D1C1与ABCD-A1B1C1D1的内切球半径之比为
3
3

⑤与平面DA1C1平行的平面与正方体的各个面都有交点,则这个截面的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+3x2+9x+a,求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=n2sin(
2n+1
2
π),则a1+a2+a3+…+a2014=(  )
A、
2013×2014
2
B、
2014×2015
2
C、
2013×2013
2
D、
2014×2014
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足:f(x+2)=
f(x)
2
,且x∈[-1,1]时,f(x)=|x|-1,则当x∈[-6,-4]时,f(x)的最小值为(  )
A、-8
B、-4
C、-
1
4
D、-
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数中,在区间(0,+∞)上为减函数的是(  )
A、y=lg|x|
B、y=x 
1
2
C、y=-2x
D、y=-
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

在约束条件
1≤x+y≤3
-1≤x-y≤1
下,则目标函数z=4x+2y的取值范围是(  )
A、[0,12]
B、[2,10]
C、[0,10]
D、[2,12]

查看答案和解析>>

科目:高中数学 来源: 题型:

在过正方体AC1的8个顶点中的3个顶点的平面中,能与三条棱CD、A1D1、BB1所成的角均相等的平面共有(  )
A、1个B、4个C、8个D、12个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下表是月份x与y用电量(单位:万度)之间的一组数据:
x23456
y34689
(1)画出散点图;
(2)如果y对x有线性相关关系,求回归方程;
(3)判断变量与之间是正相关还是负相关;
(4)预测12月份的用电量.附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
y
=
b
x+
a

查看答案和解析>>

同步练习册答案