精英家教网 > 高中数学 > 题目详情
17.若变量x,y满足条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0,则z=2x-y}\\{x+y-5<0}\end{array}$的最小值为-2.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=2x-y的最小值.

解答 解:由z=2x-y,得y=2x-z,作出不等式对应的可行域(阴影部分),
平移直线y=2x-z,由平移可知当直线y=2x-z,
经过点A或B时,直线y=2x-z的截距最大,此时z取得最小值,
此时y=2x-z与2x-y+2=0重合,
即z=-2,
即目标函数z=2x-y的最小值为-2.
故答案为:-2

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.有下列叙述:
①“x=y”的反设是“x>y或x<y”; 
②“a>b”的反设是“a<b”;
③“三角形的外心在三角形外”的反设是“三角形的外心在三角形内”;
④“三角形最多有一个钝角”的反面是“三角形没有钝角”.
其中正确的叙述有①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.命题p:“?x∈(0,+∞),有9x+$\frac{{a}^{2}}{x}$≥7a+1,其中常数a<0”,若命题q:“?x0∈R,x02+2ax0+2-a=0”
若“p且q”为假命题,“p或q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}中,a2=1,an+1=an+n-1,则a5=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x${\;}^{\frac{2}{3}}$+ex-1(x<0)与g(x)=x${\;}^{\frac{2}{3}}$+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是(  )
A.(-1,1)B.(-∞,$\frac{1}{\sqrt{e}}$)C.(-∞,1)D.(-∞,$\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a>0,b>0且a≠1,若函数y=logax过点(a+2b,0),则$\frac{1}{a+1}+\frac{1}{b}$的最小值为(  )
A.$\frac{3+2\sqrt{2}}{2}$B.$\frac{14}{3}$C.$\frac{15}{4}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知ω>0,函数$f(x)=sin(ωx+\frac{π}{4})$在$(\frac{π}{2},π)$单调递减,则ω的最大值是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知log2a>log2b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.log2(a-b)>0C.2a-b<1D.${({\frac{1}{3}})^a}<{({\frac{1}{2}})^b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.等差数列{an}奇数项的和为51,偶数项的和为42$\frac{1}{2}$,首项为1,项数为奇数,求此数列的末项及通项公式.

查看答案和解析>>

同步练习册答案