精英家教网 > 高中数学 > 题目详情
8.某校1400名学生参加某次知识竞赛,从中随机抽取100名考生的成绩,绘制成如图所示的频率分布直方图,分数落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.
(1)求这些分数落在区间[55,65)内的频率;
(2)估计该校参加本次知识竞赛中成绩低于45分的人数是多少?

分析 (1)设区间[75,85)内的频率为x,利用频率和为1,列出方程求出x的值,再求区间[55,65)内的频率;
(2)计算成绩低于45分的频率,从而求出对应的频数.

解答 解:(1)设区间[75,85)内的频率为x,
则区间[55,65),[65,75)内的频率分别为4x和2x.
依题意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,
解得x=0.05,
所以区间[55,65)内的频率为0.2;
(2)由题意得成绩低于45分的频率为
0.04+0.12+0.19=0.35,
则成绩低于45分的人数约为
0.35×1400=490.

点评 本题考查了利用频率分布直方图计算频率与频数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{-x,x<0}\end{array}\right.$,则f(f(-2))等于(  )
A.1B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.B是单位圆O上的点,点A(1,0),点B在第二象限.记∠AOB=θ且sinθ=$\frac{4}{5}$.
(1)求B点坐标;
(2)求$\frac{sin(π+θ)+2sin(\frac{π}{2}-θ)}{2cos(π-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$cosα=-\frac{3}{5}$,并且α是第二象限角,则tanα的值为(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,若a+b=1,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如下列联表及附表:
经计算:${X^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}≈3.03$
做不到“光盘”行动做到“光盘”行动
4510
3015
P(X2≥x00.100.050.025
x02.7063.8415.024
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(-1,2)$,$\overrightarrow c=(4,1)$.
(1)求满足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的实数m,n;
(2)若$({\overrightarrow a+k\overrightarrow c})⊥({2\overrightarrow b-\overrightarrow a})$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,若$sinC=\frac{2}{3},a=3,c=4$,则角A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点坐标为F($\frac{1}{2}$,0).
(Ⅰ)求p的值;
(Ⅱ)已知斜率为2的直线l与抛物线C相交于与原点不重合的两点A,B,且OA⊥OB,求l的方程.

查看答案和解析>>

同步练习册答案