精英家教网 > 高中数学 > 题目详情
13.如图,互相垂直的两条公路AM,AN旁有一矩形花园ABCD,现欲将其扩建成一个
更大的三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ过点C,
其中AB=30m,AD=20m,AP的长不小于40m且不大于90m.记三角形花园APQ
的面积为S(m2).
(1)设DQ=x(m),试用x表示AP,并求x的取值范围;
(2)当DQ的长度是多少时,S最小?最小值是多少?

分析 (1)由于DC∥AB得出△QDC∽△DAP,即可表示AP,从而可求x的取值范围;
(2)利用三角形的面积公式表示出面积,再利用基本不等式求最值,注意等号何时取得.

解答 解:(1)设DQ=x米(x>0),则AQ=x+20,
∵$\frac{DQ}{DC}=\frac{AQ}{AP}$,∴$\frac{x}{30}=\frac{x+20}{AP}$,∴AP=$\frac{30(x+20)}{x}$,
∵40≤AP≤90,
∴10≤x≤60;
(2)S=$\frac{1}{2}$×AP×AQ=$\frac{15(x+20)^{2}}{x}$=15(x+$\frac{400}{x}$+40)≥1200,
当且仅当x+$\frac{400}{x}$,即x=20时取等号,S的最小值是1200m2

点评 本题考查将实际问题转化成数学问题的能力,考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若将锐角A为60°,边长为a的菱形ABCD沿对角线BD折成60°的二面角,则A与C之间的距离为$\frac{\sqrt{3}}{2}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知关于变量x的函数f(x)=ln(x2-x+m)-$\sqrt{x-m}$,其定义域为A,若2∈A,则实数m的取值范围是-2<m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.根据如图所示的伪代码,若输入x的值为-3,则输出的结果为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.己知两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{4n-3}$,则$\frac{{a}_{4}}{{b}_{5}+{b}_{7}}$+$\frac{{a}_{8}}{{b}_{3}+{b}_{9}}$的值为$\frac{21}{41}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若变量y与x之间的相关系数r=-0.9362,则变量y与x之间(  )
A.不具有线性相关关系
B.具有线性相关关系
C.它们的线性相关关系还需要进一步确定
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.
(Ⅰ)求f(x)在x∈[0,2]上的最小值;
(Ⅱ)试探究能否存在区间M,使得f(x)和g(x)在区间M上具有相同的单调性?若能存在,说明区间M的特点,并指出f(x)和g(x)在区间M上的单调性;若不能存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),则$\overrightarrow{b}$-3$\overrightarrow{a}$与$\overrightarrow{a}$的夹角的余弦值为$-\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知g(x)=ax+1,f(x)=$\left\{\begin{array}{l}{2{\;}^{x}-1,0≤x≤2}\\{-x{\;}^{2},-2≤x<0}\end{array}\right.$,对?x1∈[-2,2],?x2∈[-2,2],使g(x1)=f(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案