精英家教网 > 高中数学 > 题目详情
11.已知g(x)=ax+1,f(x)=$\left\{\begin{array}{l}{2{\;}^{x}-1,0≤x≤2}\\{-x{\;}^{2},-2≤x<0}\end{array}\right.$,对?x1∈[-2,2],?x2∈[-2,2],使g(x1)=f(x2)成立,求实数a的取值范围.

分析 作出函数f(x)的图象,根据条件求出两个函数最值之间的关系,结合数形结合即可得到结论.

解答 解:作出函数f(x)=$\left\{\begin{array}{l}{2{\;}^{x}-1,0≤x≤2}\\{-x{\;}^{2},-2≤x<0}\end{array}\right.$,的图象如图:
则当x∈[-2,2],f(x)的最大值为f(2)=3,最小值f(-2)=-4,
若a=0,g(x)=1,此时满足?x1∈[-2,2],?x2∈[-2,2],
使g(x1)=f(x2)成立,
若a≠0,则直线g(x)过定点B(0,1),
若a>0,要使对?x1∈[-2,2],?x2∈[-2,2],
使g(x1)=f(x2)成立,
则满足g(x)max≤f(x)max,且g(x)min≥f(x)min
即2a+1≤3且-2a+1≥-4,
即a≤1且a≤$\frac{5}{2}$,
此时满足0<a≤1,
若a<0,要使对?x1∈[-2,2],?x2∈[-2,2],使g(x1)=f(x2)成立,
则满足g(x)max≤f(x)max,且g(x)min≥f(x)min
即-2a+1≤3且2a+1≥-4,
即a≥-1且a≥-$\frac{5}{2}$,
此时满足-1≤a<1,
综上可得-1≤a≤1.

点评 本题主要考查函数与方程之间的关系,利用数形结合是解决本题的关键,本题主要考查的是最值之间的关系,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,互相垂直的两条公路AM,AN旁有一矩形花园ABCD,现欲将其扩建成一个
更大的三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ过点C,
其中AB=30m,AD=20m,AP的长不小于40m且不大于90m.记三角形花园APQ
的面积为S(m2).
(1)设DQ=x(m),试用x表示AP,并求x的取值范围;
(2)当DQ的长度是多少时,S最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi),i∈N*,建立回归方程为$\widehat{y}$=0.85x-85.71,则下列结论不正确的是(  )
A.y与x具有正的线性相关关系
B.回归直线经过样本点的中心($\overline{x}$,$\overline{y}$)
C.身高增加1cm,其体重约增加0.85kg
D.若身高为170cm,则其体重必为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n•1•3•5…(2n-1)(n∈N*)时,从n=k到n=k+1时左边需增乘的代数式是4k+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,an=$\frac{1}{(n+1)^{2}}$(n∈Nx),记bn=(1-a1)(1-a2)…(1-an
(I)试求b1,b2,b3,b4的值;
(Ⅱ)根据(I)中的计算结果,猜想数列{bn}的通项公式并用数学归纳法进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用数学归纳法证明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$>f(n)(n>1,n∈N+)的过程中,n=k+1时的左边比n=k的左边增加了的项为(  )
A.$\frac{1}{2k+2}$B.-$\frac{1}{2k+2}$C.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$D.$\frac{1}{2k+1}$-$\frac{1}{2k+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC是直角三角形,斜边BC的中点为M,试建立适当的直角坐标系,证明:|AM|=$\frac{1}{2}$|BC|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解关于x的不等式(x-2)(ax-2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{m}$=(cosx,-1),$\overrightarrow{n}$=($\sqrt{3}$sinx,cos2x),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈(0,$\frac{π}{2}$)时,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案