【题目】下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是
归纳出所有三角形的内角和都是
;③由
,满足
,
,推出
是奇函数;④三角形内角和是
,四边形内角和是
,五边形内角和是
,由此得凸多边形内角和是
.
A. ①②B. ①③④C. ①②④D. ②④
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,已知
是正三角形,
平面
为
的中点,
在棱
上,且
.
![]()
(1)求三棱锥
的体积;
(2)求证:
平面
;
(3)若
为
中点,
在棱
上,且
,求证:
平面
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在个矩形ABCD的池底水平铺设污水净化管道(
,E是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E是AB的中点,F、G分别落在AD、BC上,且
,
,设
.
![]()
(1)试将污水管道的长度l表示成
的函数,并写出定义域;
(2)当
为何值时,污水净化效果最好,并求此时管道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象的一个对称中心与它相邻的一条对称轴之间的距离为
.
(1)求函数f(x)的对称轴方程及单调递增区间;
(2)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上所有点的横坐标缩短到原来的
(纵坐标不变),得到函数y=g(x)的图象,当x∈(
,
)时,求函数g(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
和椭圆
,
是椭圆
的左焦点.
(Ⅰ)求椭圆
的离心率和点
的坐标;
(Ⅱ)点
在椭圆
上,过
作
轴的垂线,交圆
于点
(
不重合),
是过点
的圆
的切线.圆
的圆心为点
,半径长为
.试判断直线
与圆
的位置关系,并证明你的结论.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.
(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果
,且
,
,那么
;
(2)请你运用上述对数运算性质计算
的值;
(3)因为
,所以
的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断
的位数.(注
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com