精英家教网 > 高中数学 > 题目详情
3.P(A)=0.8,P(B)=0.5,P(A|B)=0.4,则P(B|A)=0.25.

分析 根据条件概率公式,先求出P(AB),在利用公式计算即可.

解答 解:∵P(A)=0.8,P(B)=0.5,P(A|B)=0.4,
∴P(A|B)=$\frac{P(AB)}{P(B)}$,
∴P(AB)=P(A|B)•P(B)=0.4×0.5=0.2,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{0.2}{0.8}$=0.25.
故答案为:0.25.

点评 本题考查了条件概率公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知四个学生和一个老师共5个人排队,那么老师排在中间的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2cos$\frac{x}{2}$($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$),在△ABC中,∠A、∠B、∠C的对边分别是a、b、c且f(C)=$\sqrt{3}$+1.
(1)求∠C的大小;
(2)若c=2,且△ABC的面积为2$\sqrt{3}$,求cos2A+cos2B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{AB}$=(-1,3),$\overrightarrow{BC}$=(3,m),$\overrightarrow{CD}$=(1,n),且$\overrightarrow{AD}$∥$\overrightarrow{BC}$.
(1)求实数n的值;
(2)若$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求sin220°+cos280°+$\sqrt{3}$sin20°cos80°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解方程:$\frac{a}{\sqrt{4+{a}^{2}}}$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),其图象的一个对称中心为($\frac{π}{12}$,0),且相邻对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+f(x+$\frac{π}{3}$)(x∈[0,π]),求g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ax3-bx+3满足f(1)=5,则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆C:$\frac{{x}^{2}}{m}$+y2=1,现有命题P:“若m=4,则椭圆C的离心率为$\frac{\sqrt{3}}{2}$”,记命题P和它的逆命题,否命题,逆否命题四种形式的命题中正确的命题的个数为f(P),则f(P)=2.

查看答案和解析>>

同步练习册答案