精英家教网 > 高中数学 > 题目详情
18.求sin220°+cos280°+$\sqrt{3}$sin20°cos80°的值.

分析 见到平方式就降幂,见到乘积式就积化和差,将前二项用降幂公式,后两项积化和差,结合特殊角的三角函数值即可解决.

解答 解:原式=sin220°+sin210°+$\sqrt{3}$sin20°cos(60°+20°)
=sin220°+$\frac{1}{2}$(1-cos20°)+$\frac{\sqrt{3}}{2}$sin20°cos20°-$\frac{3}{2}$sin220°,
=$\frac{1}{2}$(1-cos20°)+$\frac{\sqrt{3}}{4}$sin40°-$\frac{1}{4}$(1-cos40°)
=$\frac{1}{4}$-cos20°+$\frac{1}{2}$($\frac{\sqrt{3}}{2}$sin40°+$\frac{1}{2}$cos40°)
=$\frac{1}{4}$-$\frac{1}{2}$cos20°+$\frac{1}{2}$sin70°
=$\frac{1}{4}$.

点评 本题主要考查了两角和与差、二倍角的三角函数的特殊值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.两对夫妻各带一个孩子出去游玩,要站成一排照相留念,两个小孩要排在一起,两位母亲不能相邻,排法总数共有144种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知四棱锥的侧棱PD⊥平面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD=$\frac{1}{2}$CD=2,点M是侧棱PC的中点.
(1)求证:BC⊥平面BDP;
(2)若tan∠PCD=$\frac{1}{2}$,求三棱锥M-BDP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<$\frac{π}{2}$.
(1)若cos(2φ-$\frac{π}{3}$)+2sin(φ-$\frac{π}{4}$)sin(φ+$\frac{π}{4}$)=$\frac{1}{2}$,求φ的值;
(2)在(1)条件下,若函数f(x)图象的相邻两条对称轴之间的距离等于$\frac{π}{2}$,求函数的解析式,并求最小正实数m,使得函数f(x)的图象向左平移m个单位所得对应的函数是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆的参数方程:$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=-1+2sinθ}\end{array}\right.$(θ是参数).
(1)求圆的圆心坐标和半径;
(2)设圆上的动点P(x,y),求z=x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.P(A)=0.8,P(B)=0.5,P(A|B)=0.4,则P(B|A)=0.25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“x≥0,y≥0,则xy≥0”的逆否命题是xy<0,则x<0或y<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}{bn}的前n项和分别为Sn,Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n}{3n+1}$,则$\frac{{a}_{n}}{{b}_{n}}$=$\frac{6n-3}{6n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线C的方程为$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=2,若直线l:y=kx+1-2k的曲线C有公共点,则k的取值范围是(  )
A.[$\frac{1}{3}$,1]B.($\frac{1}{3}$,1)C.(-∞,$\frac{1}{3}$]∪[1,+∞)D.(-∞,$\frac{1}{3}$)∪(1,+∞)

查看答案和解析>>

同步练习册答案