精英家教网 > 高中数学 > 题目详情
13.已知x,y为正实数,则$\frac{4x}{x+3y}+\frac{3y}{x}$的最小值为(  )
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{3}{2}$D.3

分析 关键基本不等式的性质求出代数式的最小值即可.

解答 解:∵x,y为正实数,
∴$\frac{4x}{x+3y}+\frac{3y}{x}$
=$\frac{4}{1+\frac{3y}{x}}$+(1+$\frac{3y}{x}$)-1
≥2$\sqrt{\frac{4}{1+\frac{3y}{x}}(1+\frac{3y}{x})}$-1=4-1=3,
当且仅当${(1+\frac{3y}{x})}^{2}=4$即x=3y时“=”成立,
故选:D.

点评 本题考查了基本不等式的性质,注意应用性质的条件,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.一辆汽车在某段路程中的行驶速率v与时间t的关系如图所示.假设这辆汽车的里程表在汽车行驶这段路程前的读数为2000km,试建立行驶这段路程时汽车里程表读数s 与时间t 的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.sin18°•sin78°-cos162°•cos78°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时,f(x)>0,且$f({\frac{1}{2}})=1$;
(1)证明:y=f(x)是定义域上的减函数;
(2)解不等式$f({x-3})>f({\frac{1}{x}})-2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,E,F分别为AD,PC的中点.
(1)求证:EF∥平面PAB;
(2)若PA=AB=2,求三棱锥P-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.式子a2$\sqrt{a{b}^{3}\sqrt{a{b}^{5}}}$化简正确的是(  )
A.a${\;}^{\frac{11}{4}}$b${\;}^{\frac{11}{4}}$B.a${\;}^{\frac{11}{4}}$b${\;}^{\frac{11}{2}}$C.a${\;}^{\frac{11}{4}}$D.b${\;}^{\frac{11}{4}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a=ln2,b=log23,c=log3$\frac{1}{2}$,则a,b,c的大小关系是(  )
A.a>c>bB.b>c>aC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,∠DAB=90°,PA=AB=BC=3,AD=1.
( I)设点E在线段PC上,若$\frac{PE}{EC}=\frac{1}{2}$,求证:DE∥平面PAB;
( II)求证:平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m>2时,求函数f(x)的单调区间;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案