精英家教网 > 高中数学 > 题目详情
4.sin18°•sin78°-cos162°•cos78°=$\frac{1}{2}$.

分析 利用诱导公式,两角差的余弦函数公式,特殊角的三角函数值化简所求即可得解.

解答 解:sin18°•sin78°-cos162°•cos78°=sin18°•sin78°-cos(180°-18°)•cos78°=sin18°•sin78°+cos18°•cos78°=cos(78°-18°)=cos60°=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是(  )
A.f(-2)<f(π)<f(-3)B.f(π)<f(-2)<f(-3)C.f(-2)<f(-3)<f(π)D.f(-3)<f(-2)<f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x-lnx的单调递减区间是(  )
A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线y=x-1与圆$x_{\;}^2+y_{\;}^2-2x+\frac{3}{4}=0$及抛物线$y_{\;}^2=4x$依次交于A,B,C,D四点,则|AB|+|CD|=(  )
A.6B.8C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+alnx-(a+2)x(a∈R).
(1)讨论函数f(x)的单调性;
(2)当f(x)有极大值与极小值时,求证函数f(x)在定义域内有唯一的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等比数列 {an}中,a3+a5=20,a4=8,则a2+a6=(  )
A.188B.24C.32D.34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知下列四个命题:p1:若函数$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\(a+2){e^{ax}},x<0\end{array}\right.$为R上的单调函数,则实数a的取值范围是(0,+∞);p2:若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x);p3:若$f(x)=x+\frac{1}{x+1}$,则?x0∈(0,+∞),f(x0)=1;p4:若函数f(x)=xlnx-ax2有两个极值点,则实数a的取值范围是$0<a<\frac{1}{2}$,其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y为正实数,则$\frac{4x}{x+3y}+\frac{3y}{x}$的最小值为(  )
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{b\sqrt{{a}^{2}-{x}^{2}}}{a}$(a>b>0)的图象是曲线C.
(1)在如图的坐标系中分别做出曲线C的示意图,并分别标出曲线C与x轴的左、右交点A1,A2
(2)设P是曲线C上位于第一象限的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.

查看答案和解析>>

同步练习册答案