精英家教网 > 高中数学 > 题目详情
16.已知下列四个命题:p1:若函数$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\(a+2){e^{ax}},x<0\end{array}\right.$为R上的单调函数,则实数a的取值范围是(0,+∞);p2:若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x);p3:若$f(x)=x+\frac{1}{x+1}$,则?x0∈(0,+∞),f(x0)=1;p4:若函数f(x)=xlnx-ax2有两个极值点,则实数a的取值范围是$0<a<\frac{1}{2}$,其中真命题的个数是(  )
A.1B.2C.3D.4

分析 p1:求出函数的导数,通过讨论a的范围结合函数的单调性求出a的范围即可;
p2:根据奇函数的定义判定即可;
p3:对表达式变形可得f(x)=x+$\frac{1}{x+1}$=x+1+$\frac{1}{x+1}$-1,利用均值定理判定即可;
p4:先求导函数,函数f(x)=x(lnx-ax)有两个极值点,等价于f′(x)=lnx-2ax+1有两个零点,等价于函数y=lnx与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.

解答 解:关于命题p1,f′(x)=$\left\{\begin{array}{l}{2ax,x≥0}\\{a(a+2{)e}^{ax},x<0}\end{array}\right.$;
∴(1)若a>0,x≥0时,f′(x)≥0,
即函数f(x)在[0,+∞)上单调递增,且ax2+1≥1;
要使f(x)在R上为单调函数则x<0时,a(a+2)>0,
∵a>0,∴解得a>0,并且(a+2)eax<a+2,
∴a+2≤1,解得a≤-1,不符合a>0,
∴这种情况不存在;
(2)若a<0,x≥0时,f′(x)≤0,
即函数f(x)在[0,+∞)上单调递减,且ax2+1≤1;
要使f(x)在R上为单调函数,则x<0时,a(a+2)<0,
解得-2<a<0,并且(a+2)eax>a+2,
∴a+2≥1,解得a≥-1,∴-1≤a<0;
综上得a的取值范围为[-1,0);
故命题p1是假命题;
关于命题p2:根据奇函数的定义可知,
f(-x)=2-x-2x=-f(x),故?x∈R,f(-x)=-f(x),
故命题p2正确;
p3:若f(x)=x+$\frac{1}{x+1}$=x+1+$\frac{1}{x+1}$-1≥1,
且当x=0时,等号成立,故不存在x0∈(0,+∞),f(x0)=1,
故命题p3错误;
由题意,y′=lnx+1-2ax
令f′(x)=lnx-2ax+1=0得lnx=2ax-1,
函数y=xlnx-ax2有两个极值点,等价于f′(x)=lnx-2ax+1有两个零点,
等价于函数y=lnx与y=2ax-1的图象有两个交点,
在同一个坐标系中作出它们的图象(如图)

当a=$\frac{1}{2}$时,直线y=2ax-1与y=lnx的图象相切,
由图可知,当0<a<$\frac{1}{2}$时,y=lnx与y=2ax-1的图象有两个交点.
则实数a的取值范围是(0,$\frac{1}{2}$);
故命题p4正确,
故选:B.

点评 本题考查均值不等式,主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义在R上的可导函数f(x),其导数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐
标系,已知曲线C的极坐标方程为4ρ2cos2θ-4ρsinθ-3=0.
(I)求直线l的极坐标方程;
(II)若直线l与曲线C相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.sin18°•sin78°-cos162°•cos78°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC为锐角三角形,角 A,B,C的对边分别是 a,b,c,其中 c=2,acosB+bcosA=$\frac{\sqrt{3}c}{2sinC}$,则△ABC周长的取值范围为(4,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时,f(x)>0,且$f({\frac{1}{2}})=1$;
(1)证明:y=f(x)是定义域上的减函数;
(2)解不等式$f({x-3})>f({\frac{1}{x}})-2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,E,F分别为AD,PC的中点.
(1)求证:EF∥平面PAB;
(2)若PA=AB=2,求三棱锥P-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a=ln2,b=log23,c=log3$\frac{1}{2}$,则a,b,c的大小关系是(  )
A.a>c>bB.b>c>aC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{lnx}{x}$,若方程f(x)=m存在两个不同的实数解,则实数m的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.(-∞,$\frac{1}{e}$)D.(0,$\frac{1}{e}$]

查看答案和解析>>

同步练习册答案