精英家教网 > 高中数学 > 题目详情
19.设l,m是两条不同的直线,α,β是两个不同的平面,给出下列命题:
①若l∥α,l∥β,则α∥β;    ②若l∥α,l⊥β,则α⊥β;
③若α⊥β,l⊥α,则l∥β;   ④若α⊥β,l∥α,则l⊥β;
⑤若l∥α,l∥β,α∩β=m,则l∥m.
其中真命题的个数为(  )
A.1个B.2个C.3个D.4个

分析 ①由已知可得:α∥β或相交,即可判断出真假;
②根据线面垂直的判定定理即可判断出真假;
③由线面垂直与平行的判定定理即可判断出真假;
④由线面垂直与平行的判定定理即可判断出真假;
⑤由线面与平行的判定定理即可判断出真假.

解答 解:①若l∥α,l∥β,则α∥β或相交,因此是假命题;
②若l∥α,l⊥β,根据线面垂直的判定定理可得:α⊥β,是真命题;
③若α⊥β,l⊥α,则l∥β或l?β,因此假命题;
④若α⊥β,l∥α,则l⊥β不正确,因此是假命题;
⑤若l∥α,l∥β,α∩β=m,则l∥m,是真命题.
其中真命题的个数为2.
故选:B.

点评 本题考查了空间线面面面的位置关系、简易逻辑的判定方法,考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中度重污染重度污染
天数413183091115
记某企业每天由于空气污染造成的经济损失为S(单位:元),空气质量指数API为ω,在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元.
(Ⅰ)试写出S(ω)表达式;
(Ⅱ)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
非重度污染重度污染合计
供暖季
非供暖季
合计100
附:参考数据与公式:
P(K2≥k)0.250.150.100.050.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.从数字1、2、3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由1,2,3,4四个数字组成(数字可重复使用)的四位数a,则a的个位是1,且恰有两个数字重复的概率是$\frac{9}{64}$(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若$z=\frac{i}{1+2i}$,i为虚数单位,则|z|=(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,以下结论成立的有②⑤.(写出所有正确结论的编号)
①对任意实数k与θ,直线l和圆M相切;②对任意实数k与θ,直线l和圆M有公共点;
③存在实数k与θ,直线l和圆M相离;  ④对任意实数θ,必存在实数k,使得直线l和圆M相切;
⑤对任意实数k,必存在实数θ,使得直线l和圆M相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数$f(x)=2sin(ωx+\frac{π}{3})$,且f(α)=-2,f(β)=0,|α-β|的最小值是$\frac{π}{2}$,则f(x)的单调递增区间是(  )
A.$[kπ-\frac{5π}{12},kπ+\frac{π}{12}]\;\;(k∈Z)$B.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]\;\;(k∈Z)$
C.$[2kπ-\frac{2π}{3},2kπ+\frac{π}{3}]\;\;(k∈Z)$D.$[2kπ-\frac{5π}{6},2kπ+\frac{π}{6}]\;(\;k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$({2+\sqrt{3}i})•z=-2\sqrt{3}i$(i是虚数单位),那么复数z对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=xlnx+ax2,a为常数.
(1)若曲线y=f(x)在x=1处的切线过点A(0,-2),求实数a的值;
(2)若f(x)有两个极值点x1,x2且xl<x2
①求证:$-\frac{1}{2}$<a<0
②求证:f (x2)>f (x1)>$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案