精英家教网 > 高中数学 > 题目详情
13.角α的终边上有一点P(-3,4),则sinα值为$\frac{4}{5}$.

分析 求出OP,然后直接利用三角函数的定义,求出sinα的值即可.

解答 解:角α的终边上有一点P(-3,4),|OP|=5,则sinα=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$

点评 本题是基础题,考查三角函数的定义,注意正确利用定义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设α:x>m,β:1≤x<3,若α是β的必要条件,则实数m的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,则输出的结果是(  )
A.121B.129C.178D.209

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=3cscx•cosx的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$y={log_{\frac{1}{3}}}({sinx-cosx})$的单调递增区间是(2kπ+$\frac{3π}{4}$,2kπ+$\frac{5π}{4}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我们把平面直角坐标系中,函数y=f(x),x∈D上的点P(x,y),满足x∈N*,y∈N*的点称为函数y=f(x)的“正格点”.
(1)请你选取一个m的值,使对函数f(x)=sinmx,x∈R的图象上有正格点,并写出函数的一个正格点坐标.
(2)若函数f(x)=sinmx,x∈R,m∈(1,2)与函数g(x)=lgx的图象有正格点交点,求m的值,并写出两个函数图象的所有交点个数.
(3)对于(2)中的m值,函数f(x)=sinmx,$x∈({0\;,\;\;\frac{5}{9}})$时,不等式logax>sinmx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=cos4x+2sinxcosx-sin4x
(1)求函数f(x)奇偶性、最小正周期和单调递增区间
(2)当$x∈[{0\;,\;\;\frac{π}{2}}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=4和点M(1,a).
(Ⅰ)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程.
(Ⅱ)a=$\sqrt{2}$,过点M作圆O的两条弦AC,BD互相垂直,求|AC|+|BD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 3x+2y-5≤0\\ x+y≤2.\end{array}\right.$则z=5x+4y的最大值为9.

查看答案和解析>>

同步练习册答案