精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.

1若直线与曲线交于两点,求的值;

2求曲线的内接矩形的周长的最大值.

【答案】12216.

【解析】

试题分析:1求出曲线的普通方程和焦点坐标,将直线的参数方程代入曲线的普通方程,利用根与系数的关系和参数的几何意义,即可得到结果;2用椭圆参数方程设矩形的四点,面积用三角函数表示,再利用三角函数的有界性求解.

试题解析:1已知曲线 的标准方程为,则其左焦点为

,将直线的参数方程与曲线联立,

,则

2由曲线的方程为,可设曲线上的定点

则以为顶点的内接矩形周长为

因此该内接矩形周长的最大值为16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列现象:①连续两次抛掷同一骰子,两次都出现2点;②走到十字路口,遇到红灯;③异性电荷相互吸引;④抛一石块,下落.其中是随机现象的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在原点,左焦点,左顶点,上顶点的周长为的面积为.

(I)求椭圆的标准方程;

II)是否存在与椭圆交于两点的直线使得成立?若存在,求出实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直角梯形所在的平面垂直于平面,.

1在直线上是否存在一点,使得平面?请证明你的结论.

2求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线为,求的值;

(2)讨论函数的单调性;

(3)设函数,若至少存在一个,使得成立,求实数的取值范

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,解关于的不等式

(2)若关于的不等式的解集是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.

(1)若直线与曲线交于两点,求的值;

(2)求曲线的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40的半圆形(以为圆心,为直径)绿化区域,现计划对其进行改建,在的延长线上取点,使,在半圆上选定一点,改建后的绿化区域由扇形区域和三角形区域组成,其面积为,设.

(1)写出关于的函数关系式,并指出的取值范围;

(2)试问多大时,改建后的绿化区域面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,,过椭圆的右顶点和上顶点的直线与圆相切.

(1)求椭圆的方程;

(2)设是椭圆的上顶点, 过点分别作直线交椭圆两点, 设这两条直线的斜率分别为,且,证明: 直线 过定点

查看答案和解析>>

同步练习册答案