精英家教网 > 高中数学 > 题目详情
10.已知关于x的函数f(x)=x+$\frac{2}{x-1}$.
(1)当x∈(1,+∞)时,求函数f(x)的最小值,并求出相应的x的值;
(2)求不等式f(x)≥-2的解集.

分析 (1)原函数解析式可变成$f(x)=(x-1)+\frac{2}{x-1}+1$,并判断x-1>0,从而由基本不等式即可求出该函数的最小值,并求出对应x值;
(2)由f(x)≥-2便可得出$x+\frac{2}{x-1}≥2$,化简,通分便可得出$\frac{{x}^{2}+x}{x-1}≥0$,根据穿根法即可求得该不等式的解集.

解答 解:(1)$f(x)=(x-1)+\frac{2}{x-1}+1$且x-1>0;
∴f(x)$≥2\sqrt{(x-1)\frac{2}{x-1}}+1=2\sqrt{2}+1$;
当且仅当$x-1=\frac{2}{x-1}$,即$x=\sqrt{2}+1$时,函数f(x)取得最小值$2\sqrt{2}+1$;
(2)$f(x)=x+\frac{2}{x-1}≥-2$$?x+2+\frac{2}{x-1}≥0$$?\frac{{{x^2}+x}}{x-1}≥0$$?\left\{\begin{array}{l}x(x+1)(x-1)≥0\\ x≠1\end{array}\right.$;
由标根法得:原不等式的解集为{x|-1≤x≤0或x>1}.

点评 本题考查函数最值的定义及求法,基本不等式求最值的方法,以及分式不等式的解法,会用标根法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知全集U={0,1,2,3,4,5},集合M={0,1,3,5},则满足M∩A={0,3}的集合A可以是(  )
A.{0,2,3}B.{0,3,5}C.{0,1,2,3}D.{0,2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若不等式组$\left\{\begin{array}{l}{{x}^{2}-x-2>0}\\{2{x}^{2}+(5+2k)x+5k<0}\end{array}\right.$的整数解只有两个,则k的取值范围是[-4,-3)∪(4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱柱ABC-A1B1C1中已知AB=AC=AA1=2,∠BAA1=∠CAA1=60°,异面直线A1C1与BC成角为45°.
(1)求证:AA1⊥BC;
(2)求二面角B-AA1-C的余弦值;
(3)求直线A1B于平面A1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=|x|+1是(  )
A.在(0,+∞)上单调递增的奇函数B.在(0,+∞)上单调递减的奇函数
C.在(0,+∞)上单调递增的偶函数D.在(0,+∞)上单调递减的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}的前n项和为Sn,满足:an2=2Sn-an(n∈N+
(1)证明:数列{an}为等差数列,并求数列{an}的通项公式;
(2)设bn=3n+(-1)n-1λ•2an,是否存在整数λ(λ≠0),使bn+1>bn对一切n∈N+恒成立?若存在,求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示的四边形ABCD,已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3)
(1)若$\overrightarrow{BC}∥\overrightarrow{DA}$且-2≤x<1,求函数y=f(x)的值域;
(2)若$\overrightarrow{BC}∥\overrightarrow{DA}$且$\overrightarrow{AC}⊥\overrightarrow{BD}$,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)证明:CD⊥面PAD;
(2)求直线AC与PB所成的角;
(3)求点P到平面MAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.把正奇数数列{2n-1}中的数按上小下大、左小右大的原则排成如图三角形数表:
设amn(m,n∈N*)是位于这个三角形数表中从上往下数第m行、从左往右数第n个数.
(1)若amn=2017,求m,n的值;
(2)已知函数f(x)=$\frac{{\root{3}{x}}}{2^n}$(x>0),若记三角形数表中从上往下数第n行各数的和为bn,求数列{f(bn)}的前n项和Sn

查看答案和解析>>

同步练习册答案