精英家教网 > 高中数学 > 题目详情

已知函数,且
(1)求实数c的值;
(2)解不等式

(1);(2)

解析试题分析:解题思路:(1)根据推得,代入解得;(2)分段解不等式,再取两者并集.
规律总结:涉及分段函数的求值、解方程、解不等式问题,要根据所给条件正确选择代入那一段解析式.
试题解析:(1)因为,所以,由,即
(2)由(1)得:
得,当时,解得
时,解得,所以的解集为
考点:分段函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有员工1000名,平均每人每年创造利润10万元。为了增加企业竞争力,决定优化产业结构,调整出名员工从事第三产业,调整后他们平均每人每年创造利为万元,剩下的员工平均每人每年创造的利润可以提高.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知上的奇函数,且当时,.
(1)求的表达式;
(2)画出的图象,并指出的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a≠0)满足为偶函数,且x=-2是函数的一个零点.又>0).
(1)求函数的解析式;
(2)若关于x 的方程上有解,求实数的取值范围;
(3)令,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义在上,对任意的,且.
(1)求,并证明:
(2)若单调,且.设向量,对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数上的最大值与最小值之和为          

查看答案和解析>>

同步练习册答案