精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,前n项和是Sn,且a2+a7=9,S6=7a3
(1)求数列{an}的通项公式;
(2)令bn=an•2n,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)根据等差数列,建立方程组,求出首项和公差,即可求数列{an}的通项公式;
(2)求出bn=an•2n的通项公式,利用错位相减法求数列{bn}的前n项和Tn
解答: 解:(1)∵
a2+a7=9
S6=7
a
 
3
,∴
2a1+7d=9
6a1+15d=7a1+14d

解得
a1=1
d=1
,即an=n.
(2)∵bn=an•2n
bn=n•2nTn=1•21+2•22+…+n•2n   ①,
2Tn=1•22+2•23+…+n•2n+1          ②
①-②-Tn=21+22+…+2n-n•2n+1
Tn=-
2(1-2n)
1-2
+n•2n+1=(n-1)2n+1+2
点评:本题主要考查等差数列的通项公式的计算,考查数列求和,要求熟练掌握错位相减法进行求和,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地区有小学18所,中学12所,大学6所,现采用分层抽样的方法从这些学校中抽取6所学校对学生的视力进行调查
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机的抽取2所学校做进一步的数据分析,
  (i)列出所有可能的抽取结果;
  (ii)求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
1
(n+1)2
(n∈N*),记f(n)=(1-a1)(1-a2)…(1-an).
(1)试通过计算f(1),f(2),f(3)的值,推测出f(n)的值;
(2)试用数学归纳法证明你的推测.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD为菱形,且AC=AB=BC=2,PA⊥平面ABCD,E,F分别是BC,PC的中点
(1)证明:AE⊥PD;
(2)若H为PD上一点,且AH⊥PD,EH与平面PAD所成角的正切值为
6
2
,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn满足6Sn+1=9an(n∈N+
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=
1
an
,证明:b1+b2+…+bn
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1(-1,0),且过点Q(1,
2
2
).
(Ⅰ)求椭圆E的方程; 
(Ⅱ)设过点P(-2,0)的直线与椭圆E交于A、B两点,且满足
BP
AP
(λ>1).
(1)若λ=3,求3|AF1|+|BF1|的值;
(2)若M、N分别为椭圆E的左、右顶点,证明:∠AF1M=∠BF1N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-1|,方程[f(x)]2-af(x)+1=0有四个不同的实数解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果
π
4
<α<
π
2
,那么下列不等式成立的是
 
.(填写所有正确的序号)
①cosα<sinα<tanα;
②tanα<sinα<cosα;
③tan(-α)<sin(-α)<cos(-α);
④cos(-α)<sin(-α)<tan(-α).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),满足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,则f(2014)的值为
 

查看答案和解析>>

同步练习册答案