精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD中,底面ABCD为菱形,且AC=AB=BC=2,PA⊥平面ABCD,E,F分别是BC,PC的中点
(1)证明:AE⊥PD;
(2)若H为PD上一点,且AH⊥PD,EH与平面PAD所成角的正切值为
6
2
,求二面角E-AF-C的余弦值.
考点:二面角的平面角及求法,直线与平面垂直的性质
专题:空间角
分析:(1)由已知条件推导出△ABC为正三角形,AE⊥BC,AE⊥AD,PA⊥AE,由此能证明AE⊥PD.
(2)由已知条件推导出∠EHA为EH与平面PAD所成的角,由此能求出二面角的余弦值.
解答: (1)证明:由AC=AB=BC,得△ABC为正三角形.
因为E为BC的中点,所以AE⊥BC.
又BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.
而PA?平面PAD,AD?平面PAD且PA∩AD=A,
所以AE⊥平面PAD.又PD?平面PAD,
所以AE⊥PD.(5分)
(2)解:因为AH⊥PD,
由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=
3

此时tan∠EHA=
AE
AH
=
3
AH
=
6
2

因此AH=
2
.又AD=2,所以∠ADH=45°,
所以PA=2.(8分)
因为PA⊥平面ABCD,PA?平面PAC,
所以平面PAC⊥平面ABCD.
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连结ES,
则∠ESO为二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE•sin 30°=
3
2
,AO=AE•cos 30°=
3
2

又F是PC的中点,在Rt△ASO中,SO=AO•sin 45°=
3
2
4

又SE=
EO2+SO2
=
3
4
+
9
8
=
30
4

在Rt△ESO中,cos∠ESO=
SO
SE
=
3
2
4
30
4
=
15
5

即所求二面角的余弦值为
15
5
.(12分)
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)若关于x的方程2x2-3x+2m=0的两根均在[-1,1]之间,求m的取值范围.
(2)若关于x的方程2x2-3x+2m=0在[-1,1]内有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Q是椭圆
x2
4
+
y2
3
=1上一点,P(1,-1),F1、F2分别是椭圆的左、右焦点.
(1)若QF12-QF22=4,求cos∠F1QF2的值;
(2)求QP+QF2的最大值,并求出此时Q点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
20
+
y2
15
=1,
(1)若P(x,y)是C上一点,求x+5y的最小值;
(2)证明椭圆C的面积S=10
3
π.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)定义在实数集上,且对任意x,y∈R均有f(x+y)=f(x)+f(y),又对任意的x>0,都有f(x)<0,f(3)=-3.
(1)判断函数y=f(x)的奇偶性.
(2)证明函数y=f(x)在R上为单调减函数.
(3)试求函数y=f(x)在[m,n](m,n∈Z,且mn<0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有6名学科竞赛优胜者,其中数学学科是A1,A2,物理学科是B,化学学科是C,语文学科是D1,D2,从竞优胜者中选出3名组成一个代表队,要求每个学科至多选出1名.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求代表队中没有数学优胜者的概率;
(Ⅲ)求A1和D1不全波选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,前n项和是Sn,且a2+a7=9,S6=7a3
(1)求数列{an}的通项公式;
(2)令bn=an•2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,sinA:sinB:sinC=3:5:7,那么这个三角形的最大角=
 
弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的面积为2
3
,且∠B=
π
3
,则
AB
BC
=
 

查看答案和解析>>

同步练习册答案