精英家教网 > 高中数学 > 题目详情
3.设$\overrightarrow a$=($\frac{3}{4}$,sinα),$\overrightarrow b$=(cosα,$\frac{1}{4}$)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则tanα=-3.

分析 通过化简可得$\frac{1}{4}$sinα+$\frac{3}{4}$cosα=0,进而可得tanα的值.

解答 解:∵$\overrightarrow a$=($\frac{3}{4}$,sinα),$\overrightarrow b$=(cosα,$\frac{1}{4}$)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=($\frac{3}{4}$,sinα)•(cosα,$\frac{1}{4}$)=$\frac{1}{4}$sinα+$\frac{3}{4}$cosα=0,
∴$\frac{sinα}{cosα}$=$\frac{3}{1}$,即tanα=-3,
故答案为:-3.

点评 本题考查平面向量数量积的运算,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,圆A与圆B交于C、D两点,圆心B在圆A上,DE为圆B的直径.已知CE=1,DE=4,则圆A的半径为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=lnx+2x,则不等式f(x2-3)<2的解集为(-2,$-\sqrt{3}$)∪($\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-ln(x+a)(a>0).
(Ⅰ)若函数f(x)在(0,+∞)单调递增,求a取值范围;
(Ⅱ)若函数f(x)的最小值为0,且当x≥0时,f(x)≤kx2,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.抛掷一枚质地不均匀的骰子,出现向上点数为1,2,3,4,5,6的概率依次记为p1,p2,p3,p4,p5,p6,经统计发现,数列{pn}恰好构成等差数列,且p4是p1的3倍.
(Ⅰ)求数列{pn}的通项公式;
(Ⅱ)甲、乙两人用这枚骰子玩游戏,并规定:掷一次骰子后,若向上点数为奇数,则甲获胜,否者乙获胜,请问这样的规则对甲、乙二人是否公平,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.运行如图的程序框图,若输入n=2015,则输出的a=(  )
A.$\frac{2015}{4031}$B.$\frac{4030}{4031}$C.$\frac{2014}{4029}$D.$\frac{2015}{4029}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.
(Ⅰ)若O为△BCD的重心,N在棱AC上,且CF=2FN,求证:OF∥平面BDN.
(Ⅱ)求直线AD与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$两个不共线.
(1)若$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=6$\overrightarrow{{e}_{1}}$-8$\overrightarrow{{e}_{2}}$,试判断$\overrightarrow{a}$、$\overrightarrow{b}$是否共线;
(2)若$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=6$\overrightarrow{{e}_{1}}$+23$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=4($\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$),求证:A、B、D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在多面体P-ABCD中,AB⊥AD,PA⊥平面ABD,PE⊥平面BDE.
(1)证明:BD⊥平面PAE;
(2)若PA=1,AD=AB=2,PE=$\frac{5}{3}$,求二面角B-PE-A的正切值.

查看答案和解析>>

同步练习册答案