分析 (Ⅰ)以D为原点,DA、DC、DD1分别为x、y、z轴,建立如图所示的空间直角坐标系O-xyz,求得B1,D1与A,P的坐标,运用向量的坐标表示和向量垂直的表示,即可得到证明;
(Ⅱ)运用线面垂直,可得$\overrightarrow{AC}为平面B{B_1}{D_1}D$的一个法向量.设直线AP与平面$BDD_1^{\;}B_1^{\;}$所成的角为θ,即可得到方程,解方程可得m;
(Ⅲ)分别求得平面PA1D1的法向量,平面PAB的法向量,运用法向量的夹角公式,计算即可得到所求值.
解答
解:(Ⅰ)以D为原点,DA、DC、DD1分别为x、y、z轴,
建立如图所示的空间直角坐标系O-xyz.则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,2),A1(1,0,2),B1(1,1,2),C1(0,1,2),P(0,1,m),
所以$\overrightarrow{{B_1}{D_1}}=(-1,-1,0),\;\;\overrightarrow{AP}=(-1,1,m)$,$⇒\overrightarrow{{B_1}{D_1}}•\overrightarrow{AP}=1-1+0=0⇒\overrightarrow{{B_1}{D_1}}⊥\overrightarrow{AP}$.…(4分)
(Ⅱ)∵$\overrightarrow{BD}=(-1,-1,0),\;\;\overrightarrow{BB_1^{\;}}=(0,0,2)$,
$\overrightarrow{AC}=(-1,1,0)$.
又∵$\overrightarrow{AC}•\overrightarrow{BD}=0,\;\;\overrightarrow{AC}•\overrightarrow{BB_1^{\;}}=0$,
∴$\overrightarrow{AC}为平面B{B_1}{D_1}D$的一个法向量.
设直线AP与平面$BDD_1^{\;}B_1^{\;}$所成的角为θ,
则$sinθ=cos({\frac{π}{2}-θ})=\frac{{|\overrightarrow{AP}•\overrightarrow{AC}|}}{{|\overrightarrow{AP}|•|\overrightarrow{AC}|}}$=$\frac{2}{{\sqrt{2}•\sqrt{{2+m_{\;}^2}}}}$=$\frac{{\sqrt{3}}}{2}$,
解得$m=\frac{{\sqrt{6}}}{3}$…(8分)
(Ⅲ)∵m=1,∴P(0,1,1),
∴$\overrightarrow{{D_1}{A_1}}=(1,0,0),\;\;\overrightarrow{{D_1}P}=(0,1,-1),\overrightarrow{AB}=(0,1,0),\overrightarrow{AP}=(-1,1,1)$.
设平面PA1D1的法向量为$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,即有$\left\{\begin{array}{l}{{x}_{1}=0}\\{{y}_{1}-{z}_{1}=0}\end{array}\right.$,
可求得$\overrightarrow{n_1}=(0,1,1)$;
设平面PAB的法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
即有$\left\{\begin{array}{l}{{y}_{2}=0}\\{-{x}_{2}+{y}_{2}+{z}_{2}=0}\end{array}\right.$,
可求得$\overrightarrow{n_2}=(1,0,1)$.
∴$cos\left?{\overrightarrow{n_1},\overrightarrow{n_2}}\right>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|\overrightarrow{n_1}|•|\overrightarrow{n_2}|}}=\frac{1}{2}⇒\left?{\overrightarrow{n_1},\overrightarrow{n_2}}\right>={60^0}$,
故平面PA1D1与平面PAB所成锐二面角为600.…(12分)
点评 本题考查线线垂直和线面角、二面角的大小求法,注意运用空间向量法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}}}{3}π$ | B. | $\frac{{4\sqrt{2}}}{3}π$ | C. | $\frac{{8\sqrt{2}}}{3}π$ | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{5π}{6}$ | B. | x=$\frac{2π}{3}$ | C. | x=$\frac{π}{3}$ | D. | x=-$\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com