精英家教网 > 高中数学 > 题目详情
17.在△ABC中,BO为边AC上的中线,$\overrightarrow{BG}$=2$\overrightarrow{GA}$,设$\overrightarrow{CD}$∥$\overrightarrow{AG}$,若$\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,则λ的值为$\frac{6}{5}$.

分析 根据题意得出G是△ABC的重心,用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出向量$\overrightarrow{AG}$,用$\overrightarrow{AG}$表示出$\overrightarrow{CD}$,写出$\overrightarrow{AD}$的表达式,利用向量相等列出方程组求出λ的值.

解答 解:由已知得G是△ABC的重心,因此$\overrightarrow{AG}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
由于$\overrightarrow{CD}$∥$\overrightarrow{AG}$,因此设$\overrightarrow{CD}$=k$\overrightarrow{AG}$,
所以$\overrightarrow{CD}$=$\frac{k}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
那么$\overrightarrow{AD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$=$\frac{k}{3}$$\overrightarrow{AB}$+($\frac{k}{3}$+1)$\overrightarrow{AC}$,
$\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,
所以$\left\{\begin{array}{l}{\frac{k}{3}=\frac{1}{5}}\\{\frac{k}{3}+1=λ}\end{array}\right.$,
解得λ=$\frac{6}{5}$.
故答案为:$\frac{6}{5}$.

点评 本题考查了向量在几何中的应用问题,也考查平面向量的基本定理,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知正数x,y满足:x2+2xy=3,则z=$\frac{y}{x}$+$\frac{y-1}{x-1}$的取值范围是z>-3-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校高一年级学生身体素质能测试的成绩(百分制)分布在[40,100]内,同时为了解学生爱好数学的情况,从中随机抽取了n名学生,这n名学生体能测试成绩的频率分布直方图如图所示,各分数段的“爱好数学”的人数情况如表所示.
 组数体能成绩分组  爱好数学的人数占本组的频率 
 第一组[50,60) 100 0.5
 第二组[60,70) 195 p
 第三组[70,80) 120 0.6
 第四组[80,90) a 0.4
 第五组[90,100]30  0.3

(1)求n、p的值;
(2)用分层抽样的方法,从体能成绩在[70,90)的“爱好数学”学生中随机抽取6人参加某项活动,现从6人中随机选取2人担任领队,求两名领队中恰有1人体能成绩在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b,c为△ABC的三边,且关于x的方程(a2+bc)x2+2$\sqrt{{b}^{2}+{c}^{2}}$x+1=0有两个相等的实数根,则A的度数是(  )
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,如果运行结果为5040,那么判断框中应填入(  )
A.k<6?B.k<7?C.k>6?D.k>7?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在长方体ABCD-A1B1C1D1中,已知底面ABCD是边长为1的正方形,侧棱AA1=2,P是侧棱CC1上的一点,CP=m(0<m<2).
(Ⅰ)试问直线B1D1与AP能否垂直?并说明理由;
(Ⅱ)若直线AP与平面BDD1B1所成角为60°,试确定m值;
(Ⅲ)若m=1,求平面PA1D1与平面PAB所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的定义域为R,且f′(x)<f(x)恒成立,若f(e+1)=1(其中e是自然对数的底数),则不等式f(lnx+x)-elnx+x-e-1<0的解集为(  )
A.(0,e)B.(e,+∞)C.(0,e+1)D.(e+1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax+lnx,其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若关于x的不等式f(x)>1有解,求实数a的取值范围;
(3)若函数f(x)在区间(0,2)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,E是圆内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切圆于G.
(1)求证:∠AEF=∠EDF;
(2)设EF=6,求FG的长.

查看答案和解析>>

同步练习册答案