精英家教网 > 高中数学 > 题目详情

已知在等比数列中,,且的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求的前项和

(Ⅰ) ;(Ⅱ).

解析试题分析:(Ⅰ)设公比是,依据等比数列的通项公式表示出,再由已知条件“的等差中项”,结合等差中项的性质得到,解出,代入等比数列的通项公式;(Ⅱ)先由(Ⅰ)中解得的,求出数列的通项公式:,观察可知它可以分为一个等差数列和一个等比数列,结合等差数列和等比数列的前项和公式求的前项和.
试题解析:(Ⅰ)设公比为

的等差中项,


解得
.
(Ⅱ)由(Ⅰ)可知,


.
考点:1.等差数列的前项和;2.等比数列的前项和;3.等差中项;4.等比数列的通项公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列满足是数列 的前项和.
(1)若数列为等差数列.
①求数列的通项
②若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足).
(1)若数列是等差数列,求它的首项和公差;
(2)证明:数列不可能是等比数列;
(3)若),试求实数的值,使得数列为等比数列;并求此时数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前n项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列前n项和为,且,令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列前n项和为,首项为,且成等差数列.
(1)求数列的通项公式;
(2)数列满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:.
(1)求的通项公式;
(2)若(),求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是等差数列的前项和,满足是数列的前项和,满足:
(1)求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等比数列,是等差数列,
(Ⅰ)求数列的通项公式及前项和
(Ⅱ)设,其中,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列项和,数列满足),
(1)求数列的通项公式;
(2)求证:当时,数列为等比数列;
(3)在题(2)的条件下,设数列的前项和为,若数列中只有最小,求的取值范围.

查看答案和解析>>

同步练习册答案