分析 (1)将点代入,根据特殊角的三角函数值求出φ的值,并根据正弦函数的性质求出f(x)在$[{0,\frac{π}{2}}]$的值域,
(2)根据函数的平移可得g(x)的解析式,描点画图即可.
解答 解:(1)∵f(x)=sin(2x+φ)+1(-π<φ<0)过点$(\frac{π}{8},0)$
∴$sin(2×\frac{π}{8}+φ)+1=0$,
∴$sin(\frac{π}{4}+φ)=-1$,
∴$\frac{π}{4}+φ=-\frac{π}{2}+2kπ,k∈Z$
∵-π<φ<0,
∴$φ=-\frac{3π}{4}$,
∴$f(x)=sin(2x-\frac{3π}{4})+1$
∵$0≤x≤\frac{π}{2}$,
∴$-\frac{3π}{4}≤2x-\frac{3π}{4}≤\frac{π}{4}$,
∴$-1≤sin(2x-\frac{3π}{4})≤\frac{{\sqrt{2}}}{2}$
∴0≤sin(2x-$\frac{3π}{4}$)+1≤1+$\frac{\sqrt{2}}{2}$
∴$y=f(x),x∈[{0,\frac{π}{2}}]$的值域为$[{0,1+\frac{{\sqrt{2}}}{2}}]$
(2)$g(x)=f(x+\frac{π}{8})$=sin[2(x+$\frac{π}{8}$)-$\frac{3π}{4}$]+1=sin(2x-$\frac{π}{2}$)+1=-cos2x+1,
y=g(x)在区间[0,π]上的图象如右图![]()
点评 本题考查了正弦函数的图象和性质,属于基础题.
科目:高中数学 来源: 题型:解答题
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | 10 | 16 | 26 |
| 成绩不优良 | 10 | 4 | 14 |
| 总计 | 20 | 20 | 40 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\sqrt{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| Y X | 有震 | 无震 | 合计 |
| 水位有变化 | 100 | 900 | 1 000 |
| 水位无变化 | 80 | 620 | 7 00 |
| 合计 | 180 | 1520 | 1700 |
| P(X2≥x0) | 0.15 | 0.1 | 0.05 |
| x0 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,e) | B. | (0,1),(1,e) | C. | (e,+∞) | D. | (-∞,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{17}$ | B. | 1 | C. | $\sqrt{7}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com