精英家教网 > 高中数学 > 题目详情
16.在等差数列{an}中,已知${a_3}=-2,{a_n}=\frac{3}{2},{S_n}=-\frac{15}{2}$,则a1=-3或$-\frac{19}{6}$.

分析 利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:设等差数列{an}的公差为d,∵${a_3}=-2,{a_n}=\frac{3}{2},{S_n}=-\frac{15}{2}$,
∴a1+2d=-2,a1+(n-1)d=$\frac{3}{2}$,$\frac{n({a}_{1}+\frac{3}{2})}{2}$=-$\frac{15}{2}$,
解得a1=-3或$-\frac{19}{6}$,
故答案为:-3或$-\frac{19}{6}$;

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$f(x)={log_2}x,g(x)=9-{x^2},若y=f[{g(x)}]$
(Ⅰ)求函数y=f[g(x)]的解析式;
(Ⅱ)求f[g(1)],f[g(-1)]的值;
(Ⅲ)判别并证明函数y=f[g(x)]的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{2n-1}的前n项组成集合An={1,3,7,…,2n-1},从集合An中任取k(k=1,2,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,则规定乘积为此数本身),记Sn=T1+T2+…+Tn.例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.则Sn=${2}^{\frac{n(n+1)}{2}}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程sinx=-$\frac{1}{2}$的解为(  )
A.x=kπ+(-1)k•$\frac{π}{6}$,k∈ZB.x=2kπ+(-1)k•$\frac{π}{6}$,k∈Z
C.x=kπ+(-1)k+1•$\frac{π}{6}$,k∈ZD.x=2kπ+(-1)k+1•$\frac{π}{6}$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x2∈{0,1,x},则实数x的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,一个半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=2,BC=4,现要将此铁皮剪出一个△PMN,其中边MN⊥BC,点P在曲线MAB上运动.
(1)设∠MOD=30°,若PM=PN,求△PMN的面积;
(2)求剪下的铁皮△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足an+2SnSn-1=0(n≥2),a1=1,
(1)求证数列数列$\left\{{\frac{1}{S_n}}\right\}$是等差数列
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f1(x)=$\frac{x}{x+3}$,(x>0),对于n∈N*,定义fn+1(x)=f1[fn(x)],则函数fn(x)的值域为(0,$\frac{2}{{3}^{n}-1}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t≥0)万元满足x=4-$\frac{k}{2t+1}$(k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数k,并将该厂家2016年该产品的利润y万元表示为年促销费用t万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

同步练习册答案