精英家教网 > 高中数学 > 题目详情
7.数列{2n-1}的前n项组成集合An={1,3,7,…,2n-1},从集合An中任取k(k=1,2,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,则规定乘积为此数本身),记Sn=T1+T2+…+Tn.例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.则Sn=${2}^{\frac{n(n+1)}{2}}$-1.

分析 通过计算出S3,并找出S1、S2、S3的共同表示形式,进而利用归纳推理即可猜想结论.

解答 解:当n=3时,A3={1,3,7},
则T1=1+3+7=11,T2=1×3+1×7+3×7=31,T3=1×3×7=21,
∴S3=T1+T2+T3=11+31+21=63,
由S1=1=21-1=${2}^{\frac{1×2}{2}}$-1,
S2=7=23-1=${2}^{\frac{2×3}{2}}$-1,
S3=63=26-1=${2}^{\frac{3×4}{2}}$-1,

猜想:Sn=${2}^{\frac{n(n+1)}{2}}$-1,
故答案为:${2}^{\frac{n(n+1)}{2}}$-1.

点评 本题考查数列的通项及前n项和,考查归纳推理,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow{b}$=(cosx,-1).
(1)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$的值;
(2)设函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$,求当0≤x≤$\frac{π}{2}$时,函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.两个函数的图象关于直线y=x对称,若其中一个函数是y=-$\sqrt{x+5}$(-5≤x≤0),则另一个函数的表达式为y=x2-5(-$\sqrt{5}$≤x≤0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y+2a-1)2=2(-1≤a≤1),直线l:y=x+b(b∈R),若动圆C总在直线l下方且它们至多有1个交点,则实数b的最小值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知⊙M:x2+y2-4x-4y-1=0及圆外一点P(5,5),过P点作⊙M的切线PA,PB,切点分别为A,B,则弦AB的长为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在公差d不为零的等差数列{an}中,若a1=2,且a3是a1,a9的等比中项.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义在R上的偶函数f(x),当x>0时,f(x)=lnx-ax,又f(x)=0恰有5个实数根.
(1)当a为常数时,求f(x)的解析式;
(2)当x>0时,是否存在a,使y=$\frac{f(x)}{{{a^2}{x^2}}}$的恒小于1.若存在,求出a的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等差数列{an}中,已知${a_3}=-2,{a_n}=\frac{3}{2},{S_n}=-\frac{15}{2}$,则a1=-3或$-\frac{19}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知直线l:3x+2y-8=0,圆M:(x-3)2+(y-2)2=1.
(1)设A,B分别为直线l与圆M上的点,求线段AB长度的取值范围;
(2)试直接写出一个圆N(异于圆M)的方程(不必写出过程),使得过直线l上任一点P均可作圆M与圆N的切线,切点分别为TM,TN,且PTM=PTN
(3)求证:存在无穷多个圆N(异于圆M),满足对每一个圆N,过直线l上任一点P均可作圆M与圆N的切线,切点分别为TM,TN,且PTM=PTN

查看答案和解析>>

同步练习册答案