精英家教网 > 高中数学 > 题目详情
设二次函数f(x)的二次项系数为a,且不等式f(x)-x<0的解集为(x1,x2)其中x1,x2满足0<x1<x2
1
a

(1)当x∈(x1,x2)时,求证x1<f(x)<x;
(2)设函数f(x)的图象关于直线x=x0对称,求证:x0
x1
2
考点:函数与方程的综合运用
专题:函数的性质及应用
分析:(1)可以构造一个函数,然后利用做差的方法进行,然后判断差的符号即可;
(2)想办法将对称轴用x1,x2表示出来,然后与
x1
2
比较即可,注意性质的运用.
解答: 解:(1)令F(x)=f(x)-x,
因为x1,x2是方程f(x)-x=0的根,所以F(x)=a(x-x1)(x-x2),且a>0,
当x∈(x1,x2)时,由x1<x<x2得(x-x1)(x-x2)<0,又a>0,
所以F(x)=a(x-x1)(x-x2)<0,即f(x)<x.
而x1-f(x)=x1-[x+F(x)]=x1-x+a(x1-x)(x-x2)=(x1-x)[1+a(x-x2)].
因为0<x1<x<x2
1
a
,所以x1-x<0,1+a(x-x2)=1+ax-ax2>1-ax2>0
得x-f(x)<0,由此得x1<f(x)<x.
(2)由(1)知f(x)=F(x)+x=x+a(x-x1)(x-x2)=ax2+[1-a(x1+x2)]x+ax1x2
x0=-
b
2a
=
a(x1+x2)-1
2a
=
ax2-1
2a
+
x1
2

因为ax2<1,所以
ax2-1
2a
+
x1
2
x1
2
,即x0
x1
2
点评:本题考查了二次函数与二次不等式、方程的根之间的关系,要注意将函数的性质与方程的根结合函数的图象有机结合起来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
c
是同一平面内的两个向量,其中
a
=(1,2),|
c
|=2
5
,且
a
c
,求向量
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsin(x+
π
6
)-1.
(1)求f(x)在区间[-
π
6
π
4
]上的最大值和最小值及此时的x的值;
(2)若f(α)=
1
2
,求sin(
π
6
-4α).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=sin(-810°),b=tan(
33π
8
),c=lg
1
5
,则它们的大小关系为(  )
A、a<b<c
B、a<c<b
C、b<c<a
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+1
x-1
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-1,0,1},B={1,2},则A∪B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个点A(2,1),B(3,2),D(-1,4)求证:AB⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<1,f(x)=logax+
1
logax

(1)写出f(x)的定义域;
(2)判断并证明f(x)在[
1
a
,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+alnx,在x=1处的切线与直线x+2y=0垂直,则实数a的值为
 

查看答案和解析>>

同步练习册答案