某个命题与自然数n有关,若n=k(k∈N*)时命题成立,则可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得( )
A.n=6时该命题不成立 B.n=6时该命题成立
C.n=4时该命题不成立 D.n=4时该命题成立
科目:高中数学 来源: 题型:
根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:
| 降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
| 工期延误天数Y | 0 | 2 | 6 | 10 |
历年气象资料表明,该工程施工期间降水量X小于300、700、900的概率分别为0.3、0.7、0.9.求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是( )
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);
④2S(x-y)=S(x)C(y)-C(x)S(y).
A.①② B.③④
C.①④ D.②③
查看答案和解析>>
科目:高中数学 来源: 题型:
以下是对命题“若两个正实数a1,a2满足a
+a
=1,则a1+a2≤
”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤
.
根据上述证明方法,若n个正实数a1、a2、…、an满足a
+a
+…+a
=1时,你能得到的结论为____________________(不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=
(n∈N*)的第二步中,当n=k+1时等式左边与n=k时等式左边的差等于________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com