分析 (Ⅰ)由题意可得|x+1|-|x|≤$\frac{1}{2}$,去绝对值,解得即可,
(Ⅱ)由$\frac{f(-x)}{f(x)}$=$\frac{{x}^{2}-x+1}{{x}^{2}+x+1}$=1-$\frac{2x}{{x}^{2}+x+1}$,构造g(x)=$\frac{2x}{{x}^{2}+x+1}$,分类讨论,利用基本不等式即可求出g(x)的范围,问题得以证明
解答 解:(Ⅰ)f(x)=x2+x+1,
∴|f(x+1)-f(x)|-|f(x)-f(x-1)|=|2x+2|-|2x|,
∴|2x+2|-|2x|≤1,
∴|x+1|-|x|≤$\frac{1}{2}$,
当x≤-1时,即-x-1+x≤$\frac{1}{2}$,即-1≤$\frac{1}{2}$恒成立,
当x≥0时,即x+1-x≤$\frac{1}{2}$,即1≤$\frac{1}{2}$不成立,
当-1<x<0,即x+1+x≤$\frac{1}{2}$,解得-1<x≤-$\frac{1}{4}$,
综上所述不等式的解集为(-∞,-$\frac{1}{4}$]
(2)∵f(x)=x2+x+1,
∴$\frac{f(-x)}{f(x)}$=$\frac{{x}^{2}-x+1}{{x}^{2}+x+1}$=1-$\frac{2x}{{x}^{2}+x+1}$,
设g(x)=$\frac{2x}{{x}^{2}+x+1}$,
当x>0时,g(x)=$\frac{2}{x+\frac{1}{x}+1}$≤$\frac{2}{2\sqrt{x•\frac{1}{x}}+1}$=$\frac{2}{3}$,当且仅当x=1时取等号,
当x<0时,g(x)=$\frac{2}{x+\frac{1}{x}+1}$=$\frac{-2}{-x+(-\frac{1}{x})-1}$≥$\frac{-2}{2\sqrt{(-x)•\frac{1}{-x}}-1}$=-2,当且仅当x=-1时取等号,
当x=0时,g(x)=0,
∴-2≤g(x)≤$\frac{2}{3}$,
∴$\frac{1}{3}$≤1-g(x)≤3,
∴$\frac{1}{3}$≤$\frac{f(-x)}{f(x)}$≤3.
点评 本题考查了绝对值不等式的解法和基本不等式的应用,考查了不等式的证明和分类讨论的思想,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | 频数 | 频率 |
| [0,10) | 25 | |
| [10,20) | 0.19 | |
| [20,30) | 50 | |
| [30,40) | 0.23 | |
| [40,50) | 0.18 | |
| [50,60) | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{4}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{32}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com