【题目】已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是( )
A.(﹣∞,0)
B.(0,
)
C.(0,1)
D.(0,+∞)
科目:高中数学 来源: 题型:
【题目】已知曲线
﹣
=1与直线y=2x+m有两个交点,则m的取值范围是( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分16分)已知函数
,
.
(1)若函数
在
上单调递增,求实数
的取值范围;
(2)若直线
是函数
图象的切线,求
的最小值;
(3)当
时,若
与
的图象有两个交点
,求证:
.(取
为
,取
为
,取
为
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2asinωxcosωx+2
cos2ωx﹣
+1(a>0,ω>0)的最大值为3,最小正周期为π.
(1)求函数f(x)的单调递增区间.
(2)若f(θ)=
,求sin(4θ+
)的值.
(3)若存在区间[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b﹣a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16. (Ⅰ)求a,b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了实施政府绩效管理、创新政府公共服务模式、提高公共服务效率.实施了“政府承诺,等你打分”民意调查活动,通过问卷调查了学生、在职人员、退休人员共250人,统计结果表不幸被污损,如表:
学生 | 在职人员 | 退休人员 | |
满意 |
|
| 78 |
不满意 | 5 |
| 12 |
若在所调查人员中随机抽取1人,恰好抽到学生的概率为0.32.
(1)求满意学生的人数;
(2)现用分层抽样的方法在所调查的人员中抽取25人,则在职人员应抽取多少人?
(3)若满意的在职人员为77,则从问卷调查中填写不满意的“学生和在职人员”中选出2人进行访谈,求这2人中包含了两类人员的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的个数为( )
(1) ![]()
(2)已知向量
=(6,2)与
=(﹣3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量
能作为平面内所有向量的一组基底
(4)若
,则
在
上的投影为
.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com