精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是(
A.(﹣∞,0)
B.(0,
C.(0,1)
D.(0,+∞)

【答案】B
【解析】解:函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x( ﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,
函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,
等价于函数y=lnx与y=2ax﹣1的图像有两个交点,
在同一个坐标系中作出它们的图像(如图)

当a= 时,直线y=2ax﹣1与y=lnx的图像相切,
由图可知,当0<a< 时,y=lnx与y=2ax﹣1的图像有两个交点.
则实数a的取值范围是(0, ).
故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线 =1与直线y=2x+m有两个交点,则m的取值范围是(
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.由增加的长度决定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16分)已知函数

1)若函数上单调递增,求实数的取值范围;

2)若直线是函数图象的切线,求的最小值;

3)当时,若的图象有两个交点,求证: .(取,取,取

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2asinωxcosωx+2 cos2ωx﹣ +1(a>0,ω>0)的最大值为3,最小正周期为π.
(1)求函数f(x)的单调递增区间.
(2)若f(θ)= ,求sin(4θ+ )的值.
(3)若存在区间[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b﹣a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16. (Ⅰ)求a,b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14分

如图,在多面体中,四边形是菱形,相交于点,平面平面,点的中点.

1求证:直线平面

2求证:直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了实施政府绩效管理、创新政府公共服务模式、提高公共服务效率.实施了“政府承诺,等你打分”民意调查活动,通过问卷调查了学生、在职人员、退休人员共250人,统计结果表不幸被污损,如表:

学生

在职人员

退休人员

满意

78

不满意

5

12

若在所调查人员中随机抽取1人,恰好抽到学生的概率为0.32.
(1)求满意学生的人数;
(2)现用分层抽样的方法在所调查的人员中抽取25人,则在职人员应抽取多少人?
(3)若满意的在职人员为77,则从问卷调查中填写不满意的“学生和在职人员”中选出2人进行访谈,求这2人中包含了两类人员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的个数为( )
(1)
(2)已知向量 =(6,2)与 =(﹣3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量 能作为平面内所有向量的一组基底
(4)若 ,则 上的投影为
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案