| A. | [2,+∞) | B. | $[{\sqrt{3}\;,\;+∞})$ | C. | $[{\sqrt{2}\;,\;+∞})$ | D. | $[{\frac{{\sqrt{5}+1}}{2}\;,\;+∞})$ |
分析 设P点的横坐标为x,根据$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{1}{2}{c^2}$,P在双曲线左支上一点(|x|≥a),利用双曲线的第二定义,以及余弦定理,可得x关于e的表达式,进而根据x的范围确定e的范围.
解答 解:设P点的横坐标为x,P在双曲线上,(|x|≥a),|PF1|=a+ex,|PF2|=a-ex,
∵$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{1}{2}{c^2}$,即:|PF1||PF2|cos<$\overrightarrow{P{F}_{1}}$,$\overrightarrow{P{F}_{2}}$>=-$\frac{1}{2}{c}^{2}$,
:|PF1||PF2|$\frac{|\overrightarrow{P{F}_{1}}{|}^{2}+|{\overrightarrow{P{F}_{2}}|}^{2}-4{c}^{2}}{|\overrightarrow{P{F}_{1}}||\overrightarrow{P{F}_{2}}|}$=-$\frac{1}{2}{c}^{2}$,
可得:|PF1|2+|PF2|2-4c2=-c2,
可得2a2+2e2x2=3c2,2+2e2($\frac{x}{a}$)2=3e2,$(\frac{x}{a})^{2}≥1$,
可得2+2e2≤3e2,
∴e$≥\sqrt{2}$,
故选:C.
点评 本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16π}{3}$ | B. | $\frac{32π}{3}$ | C. | $\frac{64π}{3}$ | D. | $\frac{128π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-$\frac{π}{3}$)>f(-1)>f($\frac{π}{11}$) | B. | f(-1)>f(-$\frac{π}{3}$)>f($\frac{π}{11}$) | C. | f(-$\frac{π}{11}$)>f(-1)>f($\frac{π}{3}$) | D. | f($\frac{π}{3}$)>f($\frac{π}{11}$)>f(-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | C${\;}_{6}^{2}$A${\;}_{5}^{5}$ | B. | 5C${\;}_{6}^{1}$A${\;}_{5}^{5}$ | C. | 5A${\;}_{5}^{5}$ | D. | C${\;}_{6}^{1}$A${\;}_{5}^{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{{8\sqrt{3}}}{3}$ | C. | $8\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com