精英家教网 > 高中数学 > 题目详情
6.若球的表面积为16π,则球的体积为(  )
A.$\frac{16π}{3}$B.$\frac{32π}{3}$C.$\frac{64π}{3}$D.$\frac{128π}{3}$

分析 设出球的半径,表示出表面积,求出半径,进一步求球的体积.

解答 解:设球的半径为r,由球的表面积为16π,得到4πr2=16π,解得r=2,
所以球的体积为$\frac{4}{3}π×{2}^{3}=\frac{32}{3}π$;
故选B.

点评 本题考查了球的表面积和体积公式的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若关于x的方程|f(|x|)|=a,当a>0时总有4个解,则f(x)可以是(  )
A.x2-1B.$\frac{1}{x-1}$C.2x-2D.log2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x2-x≤0},B={x|2x-1>0},则A∩B=(  )
A.[0,$\frac{1}{2}$)B.[0,1]C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=alnx-x+$\frac{1}{x}$,在区间(0,2]内任取两个不相等的实数m.n,若不等式mf(m)+nf(n)<nf(m)+mf(n)恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线l的方向向量为$\overrightarrow{a}=(1,0,2)$,平面α的法向量为$\overrightarrow{n}$=(-2,0,-4),则(  )
A.l∥αB.l⊥αC.l?αD.l与α斜交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2015)2f(x+2015)-4f(-2)>0的解集为(  )
A.(2017,+∞)B.(0,2017)C.(-∞,-2017)D.(-2017,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下面关于循环小数化分数的等式:0.$\stackrel{•}{3}$=$\frac{3}{9}$=$\frac{1}{3}$,0.$\stackrel{•}{1}$$\stackrel{•}{8}$=$\frac{18}{99}$=$\frac{2}{11}$,0.$\stackrel{•}{3}$5$\stackrel{•}{2}$=$\frac{352}{999}$,0.000$\stackrel{•}{5}$$\stackrel{•}{9}$=$\frac{1}{1000}$×$\frac{59}{99}$=$\frac{59}{99000}$,据此推测循环小数0.2$\stackrel{•}{3}$可化分数为$\frac{7}{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图的程序框图,如果输入的a=-1,则输出的S=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1(-c,0),F2(c,0)分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,\;b>0})$的左、右焦点,P为双曲线上的一点且满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{1}{2}{c^2}$,则此双曲线的离心率的取值范围是(  )
A.[2,+∞)B.$[{\sqrt{3}\;,\;+∞})$C.$[{\sqrt{2}\;,\;+∞})$D.$[{\frac{{\sqrt{5}+1}}{2}\;,\;+∞})$

查看答案和解析>>

同步练习册答案