精英家教网 > 高中数学 > 题目详情
15.执行如图的程序框图,如果输入的a=-1,则输出的S=(  )
A.2B.3C.4D.5

分析 执行程序框图,依次写出每次循环得到的S,K值,当K=7时,程序终止即可得到结论.

解答 解:执行程序框图,有S=0,K=1,a=-1,代入循环,
第一次满足循环,S=-1,a=1,K=2;
满足条件,第二次满足循环,S=1,a=-1,K=3;
满足条件,第三次满足循环,S=-2,a=1,K=4;
满足条件,第四次满足循环,S=2,a=-1,K=5;
满足条件,第五次满足循环,S=-3,a=1,K=6;
满足条件,第六次满足循环,S=3,a=-1,K=7;
K≤6不成立,退出循环输出S的值为3.
故选:B.

点评 本题主要考查了程序框图和算法,属于基本知识的考查,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若a>b,c>d,则下列不等式正确的是(  )
A.ac>bdB.a-b<d-cC.a-c>b-dD.ad<bd

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若球的表面积为16π,则球的体积为(  )
A.$\frac{16π}{3}$B.$\frac{32π}{3}$C.$\frac{64π}{3}$D.$\frac{128π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点A(1,$\frac{{\sqrt{2}}}{2}$)是离心率为$\frac{{\sqrt{2}}}{2}$,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一点,斜率为$\frac{{\sqrt{2}}}{2}$的直线BD交椭圆C于B,D两点,且A,B,D三点不重合.
(1)求椭圆C的方程;
(2)△ABD的面积是否存在最大值,若存在,求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,如果有性质acosA=bcosB,则这个三角形是(  )
A.等腰三角形B.等腰或直角三角形
C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等差数列{an}中,若a1、a10是方程2x2+5x+1=0的两个根,则公差d(d>0)为(  )
A.$\frac{\sqrt{17}}{18}$B.$\frac{\sqrt{15}}{11}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=xsinx,则f($\frac{π}{11}$),f(-1),f(-$\frac{π}{3}$)的大小关系为(  )
A.f(-$\frac{π}{3}$)>f(-1)>f($\frac{π}{11}$)B.f(-1)>f(-$\frac{π}{3}$)>f($\frac{π}{11}$)C.f(-$\frac{π}{11}$)>f(-1)>f($\frac{π}{3}$)D.f($\frac{π}{3}$)>f($\frac{π}{11}$)>f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.第五届北京农业嘉年华于2017年3月11日至5月7日在昌平区兴寿镇草莓博览园中举办,设置“三馆两园一带一谷一线”八大功能板块.现安排六名志愿者去其中的“三馆两园”参加志愿者服务工作,若每个“馆”与“园”都至少安排一人,则不同的安排方法种数为(  )
A.C${\;}_{6}^{2}$A${\;}_{5}^{5}$B.5C${\;}_{6}^{1}$A${\;}_{5}^{5}$C.5A${\;}_{5}^{5}$D.C${\;}_{6}^{1}$A${\;}_{5}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinAsin(C+$\frac{π}{6}$)=sinB+sinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.

查看答案和解析>>

同步练习册答案