精英家教网 > 高中数学 > 题目详情
20.在等差数列{an}中,若a1、a10是方程2x2+5x+1=0的两个根,则公差d(d>0)为(  )
A.$\frac{\sqrt{17}}{18}$B.$\frac{\sqrt{15}}{11}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 解方程2x2+5x+1=0,求出${a}_{1}=\frac{-5-\sqrt{17}}{4}$,a${\;}_{10}=\frac{-5+\sqrt{17}}{4}$,由此能求出公差d.

解答 解:在等差数列{an}中,
∵a1、a10是方程2x2+5x+1=0的两个根,公差d(d>0),
∴a1<a10
解方程2x2+5x+1=0,得${a}_{1}=\frac{-5-\sqrt{17}}{4}$,a${\;}_{10}=\frac{-5+\sqrt{17}}{4}$.
∴d=$\frac{{a}_{10}-{a}_{1}}{10-1}$=$\frac{\frac{-5+\sqrt{17}}{4}-\frac{-5-\sqrt{17}}{4}}{9}$=$\frac{\sqrt{17}}{18}$.
故选:A.

点评 本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在[0,2π]上随机取一个值α,使得关于x的方程x2-4x•sinα+1=0有实根的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2015)2f(x+2015)-4f(-2)>0的解集为(  )
A.(2017,+∞)B.(0,2017)C.(-∞,-2017)D.(-2017,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A(-1,0),B(1,0),如果点C在函数y=-3x2+2的图象上,那么使得△ABC为直角三角形的点C的个数为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图的程序框图,如果输入的a=-1,则输出的S=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)计算(lg2)2+lg5×lg20+$(\root{3}{2}×\sqrt{3}{)^6}$
(2)已知tanα=2,求$\frac{2sinα-5cosα}{4sinα-7cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平行四边形ABCD中,若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AB}$=(  )
A.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)B.$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$)C.$\frac{1}{2}$($\overrightarrow{b}$-$\overrightarrow{a}$)D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,四边形ABCD的各顶点均在椭圆E上,且对角线AC,BD均过坐标原点O,点D(2,1),AC,BD的斜率之积为$-\frac{1}{4}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过D作直线l平行于AC.若直线l′平行于BD,且与椭圆E交于不同的两点M.N,与直线l交于点P.
(1)证明:直线l与椭圆E有且只有一个公共点;
(2)证明:存在常数λ,使得|PD|2=λ|PM|•|PN|,并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l1:x+(1+m)y=2-m与l2:2mx+4y=-16平行,则实数m的值是(  )
A.1B.-2C.-1或2D.1或-2

查看答案和解析>>

同步练习册答案