精英家教网 > 高中数学 > 题目详情
10.在△ABC中,如果有性质acosA=bcosB,则这个三角形是(  )
A.等腰三角形B.等腰或直角三角形
C.直角三角形D.等腰直角三角形

分析 利用余弦定理代入化简即可得出.

解答 解:∵acosA=bcosB,
∴a×$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=b×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
∴化为:(a2+b2-c2)(a+b)(a-b)=0,
∴解得a=b,或a2+b2=c2
∴该三角形是等腰或直角三角形.
故选:B.

点评 本题考查了余弦定理的应用、三角形形状的判定,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.现有红、黄、蓝三种颜色供选择,在如图所示的五个空格里涂上颜色,要求相邻空格不同色,则不同涂色方法的种数是(  )
A.24B.36C.48D.108

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线l的方向向量为$\overrightarrow{a}=(1,0,2)$,平面α的法向量为$\overrightarrow{n}$=(-2,0,-4),则(  )
A.l∥αB.l⊥αC.l?αD.l与α斜交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下面关于循环小数化分数的等式:0.$\stackrel{•}{3}$=$\frac{3}{9}$=$\frac{1}{3}$,0.$\stackrel{•}{1}$$\stackrel{•}{8}$=$\frac{18}{99}$=$\frac{2}{11}$,0.$\stackrel{•}{3}$5$\stackrel{•}{2}$=$\frac{352}{999}$,0.000$\stackrel{•}{5}$$\stackrel{•}{9}$=$\frac{1}{1000}$×$\frac{59}{99}$=$\frac{59}{99000}$,据此推测循环小数0.2$\stackrel{•}{3}$可化分数为$\frac{7}{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点F(1,0),并且经过点P(1,$\frac{{\sqrt{2}}}{2}$).
(I) 求椭圆E的方程;
(II) 过F作互相垂直的两条直线l1,l2,分别与E交于点A,C与点B,D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图的程序框图,如果输入的a=-1,则输出的S=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y=sin2x-\sqrt{3}cos2x$的单调递减区间是(  )
A.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}](k∈Z)$B.$[{2kπ+\frac{5π}{12},2kπ+\frac{11π}{12}}](k∈Z)$
C.$[{kπ+\frac{5π}{12},kπ+\frac{11π}{12}}](k∈Z)$D.$[{2kπ+\frac{π}{6},2kπ+\frac{2π}{3}}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.sin(-225°)的值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)是R上的偶函数,并且在(-∞,0)上是增函数,已知x1<0,x2>0,且|x1|<|x2|,则(  )
A.f(-x1)>f(-x2B.f(-x1)<f(-x2
C.f(-x1)=f(-x2D.f(-x1)与f(-x2)的大小不定

查看答案和解析>>

同步练习册答案