3£®ÒÑÖªµãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©ÊÇÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉϵÄÒ»µã£¬Ð±ÂÊΪ$\frac{{\sqrt{2}}}{2}$µÄÖ±ÏßBD½»ÍÖÔ²CÓÚB£¬DÁ½µã£¬ÇÒA£¬B£¬DÈýµã²»Öغϣ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¡÷ABDµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¬Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£®

·ÖÎö £¨1£©¸ù¾ÝµãµãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©ÊÇÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$µÄÍÖÔ²CÉϵÄÒ»µã£¬½¨Á¢·½³Ì£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬¼ÆËã³öÈý½ÇÐεÄÃæ»ýµÄ±í´ïʽ£¬ÀûÓöþ´Îº¯ÊýµÄ×îÖµ£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¡­¢Ù
µãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©ÊÇÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉϵÄÒ»µã£¬$\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1$£¬¡­¢Ú£¬
a2=b2+c2¡­¢Û£¬½â¢Ù¢Ú¢Û£¬
¡àa=$\sqrt{2}$£¬b=1£¬c=1£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£®¡­£¨5·Ö£©
£¨2£©ÉèÖ±ÏßBDµÄ·½³ÌΪy=$\frac{\sqrt{2}}{2}$x+m£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{2}}{2}x+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬ÏûÈ¥y¿ÉµÃ£º2x2+2$\sqrt{2}$mx+2m2-2=0£¬
¡àx1+x2=-$\sqrt{2}$m£¬x1x2=m2-1£¬
ÓÉ¡÷=8m2-16£¨m2-1£©=-8m2+16£¾0£¬¿ÉµÃ-$\sqrt{2}$£¼m£¼$\sqrt{2}$£¬
¡à|BD|=$\sqrt{1+£¨\frac{\sqrt{2}}{2}£©^{2}}$|x1-x2|=$\frac{\sqrt{6}}{2}$$\sqrt{2{m}^{2}-4{m}^{2}+4}$=$\sqrt{3}$•$\sqrt{2-{m}^{2}}$£¬
ÉèdΪµãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©µ½Ö±ÏßBD£ºy=$\frac{\sqrt{2}}{2}$x+mµÄ¾àÀ룬¡àd=$\frac{|m|}{\sqrt{1+\frac{1}{2}}}$=$\frac{\sqrt{6}}{3}|m|$£¬
¡àS¡÷ABD=$\frac{1}{2}$|BD|d=$\frac{1}{2}¡Á\sqrt{3}\sqrt{2-{m}^{2}}¡Á\frac{\sqrt{6}}{3}|m|$=$\frac{\sqrt{2}}{2}$$\sqrt{2{m}^{2}-{m}^{4}}$£¬
µ±ÇÒ½öµ±m=¡À1¡Ê£¨-$\sqrt{2}$£¬$\sqrt{2}$£©Ê±£¬¡÷ABDµÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{\sqrt{2}}{2}$£®¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤¹«Ê½µÄÓ¦ÓúͶþ´Îº¯ÊýÇó×îÖµµÄ·½·¨£¬¿¼²é˼άÄÜÁ¦¡¢ÔËËãÄÜÁ¦ºÍ×ۺϽâÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßl¹ýµãP£¨-1£¬-2£©£¬ÇÒ·½ÏòÏòÁ¿Îª£¨1£¬$\sqrt{3}$£©£®ÔÚÒÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos£¨¦È-$\frac{¦Ð}{3}$£©£®
£¨1£©ÇóÖ±ÏßlµÄ²ÎÊý·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÔ²CÏཻÓÚM¡¢NÁ½µã£¬Çó$\frac{1}{|PM|}$+$\frac{1}{|PN|}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=alnx-x+$\frac{1}{x}$£¬ÔÚÇø¼ä£¨0£¬2]ÄÚÈÎÈ¡Á½¸ö²»ÏàµÈµÄʵÊým£®n£¬Èô²»µÈʽmf£¨m£©+nf£¨n£©£¼nf£¨m£©+mf£¨n£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬2]B£®£¨-¡Þ£¬$\frac{5}{2}$]C£®[2£¬$\frac{5}{2}$]D£®[$\frac{5}{2}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®É躯Êýf£¨x£©ÊǶ¨ÒåÔÚ£¨-¡Þ£¬0£©ÉϵĿɵ¼º¯Êý£¬Æäµ¼º¯ÊýΪf¡ä£¨x£©£¬ÇÒÓÐ2f£¨x£©+xf¡ä£¨x£©£¾x2£¬Ôò²»µÈʽ£¨x+2015£©2f£¨x+2015£©-4f£¨-2£©£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨2017£¬+¡Þ£©B£®£¨0£¬2017£©C£®£¨-¡Þ£¬-2017£©D£®£¨-2017£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¹Û²ìÏÂÃæ¹ØÓÚÑ­»·Ð¡Êý»¯·ÖÊýµÄµÈʽ£º0.$\stackrel{•}{3}$=$\frac{3}{9}$=$\frac{1}{3}$£¬0.$\stackrel{•}{1}$$\stackrel{•}{8}$=$\frac{18}{99}$=$\frac{2}{11}$£¬0.$\stackrel{•}{3}$5$\stackrel{•}{2}$=$\frac{352}{999}$£¬0.000$\stackrel{•}{5}$$\stackrel{•}{9}$=$\frac{1}{1000}$¡Á$\frac{59}{99}$=$\frac{59}{99000}$£¬¾Ý´ËÍÆ²âÑ­»·Ð¡Êý0.2$\stackrel{•}{3}$¿É»¯·ÖÊýΪ$\frac{7}{30}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªµãA£¨-1£¬0£©£¬B£¨1£¬0£©£¬Èç¹ûµãCÔÚº¯Êýy=-3x2+2µÄͼÏóÉÏ£¬ÄÇôʹµÃ¡÷ABCΪֱ½ÇÈý½ÇÐεĵãCµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®8B£®6C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ö´ÐÐÈçͼµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈëµÄa=-1£¬ÔòÊä³öµÄS=£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬Èô$\overrightarrow{AC}$=$\overrightarrow{a}$£¬$\overrightarrow{BD}$=$\overrightarrow{b}$£¬Ôò$\overrightarrow{AB}$=£¨¡¡¡¡£©
A£®$\frac{1}{2}$£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©B£®$\frac{1}{2}$£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©C£®$\frac{1}{2}$£¨$\overrightarrow{b}$-$\overrightarrow{a}$£©D£®$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýy=-$\frac{1}{2}$cosx+4È¡µÃ×îСֵʱ£¬×Ô±äÁ¿xµÄ¼¯ºÏÊÇ{x|x=2k¦Ð£¬k¡ÊZ}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸