·ÖÎö £¨1£©¸ù¾ÝµãµãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©ÊÇÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$µÄÍÖÔ²CÉϵÄÒ»µã£¬½¨Á¢·½³Ì£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬¼ÆËã³öÈý½ÇÐεÄÃæ»ýµÄ±í´ïʽ£¬ÀûÓöþ´Îº¯ÊýµÄ×îÖµ£¬¿ÉµÃ½áÂÛ£®
½â´ð
½â£º£¨1£©¡ßÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¡¢Ù
µãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©ÊÇÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉϵÄÒ»µã£¬$\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1$£¬¡¢Ú£¬
a2=b2+c2¡¢Û£¬½â¢Ù¢Ú¢Û£¬
¡àa=$\sqrt{2}$£¬b=1£¬c=1£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£®¡£¨5·Ö£©
£¨2£©ÉèÖ±ÏßBDµÄ·½³ÌΪy=$\frac{\sqrt{2}}{2}$x+m£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{2}}{2}x+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬ÏûÈ¥y¿ÉµÃ£º2x2+2$\sqrt{2}$mx+2m2-2=0£¬
¡àx1+x2=-$\sqrt{2}$m£¬x1x2=m2-1£¬
ÓÉ¡÷=8m2-16£¨m2-1£©=-8m2+16£¾0£¬¿ÉµÃ-$\sqrt{2}$£¼m£¼$\sqrt{2}$£¬
¡à|BD|=$\sqrt{1+£¨\frac{\sqrt{2}}{2}£©^{2}}$|x1-x2|=$\frac{\sqrt{6}}{2}$$\sqrt{2{m}^{2}-4{m}^{2}+4}$=$\sqrt{3}$•$\sqrt{2-{m}^{2}}$£¬
ÉèdΪµãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©µ½Ö±ÏßBD£ºy=$\frac{\sqrt{2}}{2}$x+mµÄ¾àÀ룬¡àd=$\frac{|m|}{\sqrt{1+\frac{1}{2}}}$=$\frac{\sqrt{6}}{3}|m|$£¬
¡àS¡÷ABD=$\frac{1}{2}$|BD|d=$\frac{1}{2}¡Á\sqrt{3}\sqrt{2-{m}^{2}}¡Á\frac{\sqrt{6}}{3}|m|$=$\frac{\sqrt{2}}{2}$$\sqrt{2{m}^{2}-{m}^{4}}$£¬
µ±ÇÒ½öµ±m=¡À1¡Ê£¨-$\sqrt{2}$£¬$\sqrt{2}$£©Ê±£¬¡÷ABDµÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{\sqrt{2}}{2}$£®¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤¹«Ê½µÄÓ¦ÓúͶþ´Îº¯ÊýÇó×îÖµµÄ·½·¨£¬¿¼²é˼άÄÜÁ¦¡¢ÔËËãÄÜÁ¦ºÍ×ۺϽâÌâµÄÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬2] | B£® | £¨-¡Þ£¬$\frac{5}{2}$] | C£® | [2£¬$\frac{5}{2}$] | D£® | [$\frac{5}{2}$£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨2017£¬+¡Þ£© | B£® | £¨0£¬2017£© | C£® | £¨-¡Þ£¬-2017£© | D£® | £¨-2017£¬0£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8 | B£® | 6 | C£® | 4 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$£¨$\overrightarrow{a}$+$\overrightarrow{b}$£© | B£® | $\frac{1}{2}$£¨$\overrightarrow{a}$-$\overrightarrow{b}$£© | C£® | $\frac{1}{2}$£¨$\overrightarrow{b}$-$\overrightarrow{a}$£© | D£® | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com