精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=alnx-x+$\frac{1}{x}$,在区间(0,2]内任取两个不相等的实数m.n,若不等式mf(m)+nf(n)<nf(m)+mf(n)恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[$\frac{5}{2}$,+∞)

分析 求出函数的导数,得到函数的单调性,问题转化为a≤x+$\frac{1}{x}$在(0,2]恒成立,求出a的范围即可.

解答 解:f′(x)=$\frac{{-x}^{2}+ax-1}{{x}^{2}}$,
若不等式mf(m)+nf(n)<nf(m)+mf(n)在(0,2]恒成立,
则(m-n)[f(m)-f(n)]<0在(0,2]恒成立,
故f(x)在(0,2]递减,
故-x2+ax-1≤0在(0,2]恒成立,
故a≤x+$\frac{1}{x}$在(0,2]恒成立,
而y=x+$\frac{1}{x}$≥2在(0,2]恒成立,当且仅当x=1时取最小值2,
故a≤2,
故选:A.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在四棱锥P-ABCD中,底面ABCD为矩形,AB⊥PC,其中BP=BC=3,PC=$\sqrt{6}$
(1)点E,F分别为线段BP,DC中点,求证:EF∥平面APD
(2)设G为线段BC上的一点,且BG=2GC,求证:PG⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a>b,c>d,则下列不等式正确的是(  )
A.ac>bdB.a-b<d-cC.a-c>b-dD.ad<bd

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=log2(x+3)(x-5)的定义域是A,函数g(x)=x3+m在x∈[1,2]上的值域为B,又已知B⊆A,则实数m的取值范围是(  )
A.(-∞,-11)∪(4,+∞)B.(-11,4)C.(-4,-3)D.(-∞,-4]∪[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,曲线C的参数方程是$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数,0≤α≤π),以原点O为极点,x轴的正半轴为极轴,建立极坐标系.
(1)写出C的极坐标方程;
(2)若A、B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右支上非顶点的一点A关于原点O的对称点为B,F为其右焦点,若$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,设∠BAF=θ,且θ∈($\frac{π}{4}$,$\frac{5π}{12}$),则双曲线C离心率的取值范围是(  )
A.($\sqrt{2}$,2]B.[$\sqrt{2}$,+∞)C.($\sqrt{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若球的表面积为16π,则球的体积为(  )
A.$\frac{16π}{3}$B.$\frac{32π}{3}$C.$\frac{64π}{3}$D.$\frac{128π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点A(1,$\frac{{\sqrt{2}}}{2}$)是离心率为$\frac{{\sqrt{2}}}{2}$,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一点,斜率为$\frac{{\sqrt{2}}}{2}$的直线BD交椭圆C于B,D两点,且A,B,D三点不重合.
(1)求椭圆C的方程;
(2)△ABD的面积是否存在最大值,若存在,求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.第五届北京农业嘉年华于2017年3月11日至5月7日在昌平区兴寿镇草莓博览园中举办,设置“三馆两园一带一谷一线”八大功能板块.现安排六名志愿者去其中的“三馆两园”参加志愿者服务工作,若每个“馆”与“园”都至少安排一人,则不同的安排方法种数为(  )
A.C${\;}_{6}^{2}$A${\;}_{5}^{5}$B.5C${\;}_{6}^{1}$A${\;}_{5}^{5}$C.5A${\;}_{5}^{5}$D.C${\;}_{6}^{1}$A${\;}_{5}^{5}$

查看答案和解析>>

同步练习册答案