精英家教网 > 高中数学 > 题目详情
19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右支上非顶点的一点A关于原点O的对称点为B,F为其右焦点,若$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,设∠BAF=θ,且θ∈($\frac{π}{4}$,$\frac{5π}{12}$),则双曲线C离心率的取值范围是(  )
A.($\sqrt{2}$,2]B.[$\sqrt{2}$,+∞)C.($\sqrt{2}$,+∞)D.(2,+∞)

分析 作出对应的图象,设双曲线的左焦点为F′,连接AF′,BF′.则四边形AFBF′为矩形.因此|AB=|FF′|=2c.|AF|=2csinθ,|BF|=2ccosθ.可得e=$\frac{c}{a}$的表达式,求出即可.

解答 解:如图所示,设双曲线的左焦点为F′,连接AF′,BF′.
∵$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,∴AF⊥FB,∴四边形AFBF′为矩形.
因此|AB=|FF′|=2c.
则|BF|=2csinθ,|AF|=2ccosθ.
∵|AF′|-|AF|=2a.
∴2csinθ-2ccosθ=2a.
即c(cosθ-sinθ)=-a,
则e=$\frac{c}{a}$=$\frac{1}{sinθ-cosθ}$=$\frac{1}{\sqrt{2}sin(θ-\frac{π}{4})}$,
∵θ∈($\frac{π}{4}$,$\frac{5π}{12}$),
∴θ-$\frac{π}{4}$∈(0,$\frac{π}{6}$),
则sin(θ-$\frac{π}{4}$)∈(0,$\frac{1}{2}$),
$\sqrt{2}$sin(θ$-\frac{π}{4}$)∈(0,$\frac{\sqrt{2}}{2}$),
则$\frac{1}{\sqrt{2}sin(θ-\frac{π}{4})}$>$\frac{1}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$,
即e>$\sqrt{2}$,
故双曲线离心率的取值范围是($\sqrt{2}$,+∞),
故选:C.

点评 本题考查了双曲线的定义及其性质、两角差的余弦公式、余弦函数的单调性,考查了推理能力与计算能力,注意利用数形结合进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.先后掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x≠y”,则概率P(B|A)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在[0,2π]上随机取一个值α,使得关于x的方程x2-4x•sinα+1=0有实根的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$\frac{2}{1-i}$-2i(i为虚数单位)的共轭复数的虚部等于(  )
A.-1B.1-iC.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=alnx-x+$\frac{1}{x}$,在区间(0,2]内任取两个不相等的实数m.n,若不等式mf(m)+nf(n)<nf(m)+mf(n)恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PD⊥平面 ABCD,AC⊥BD于点O,E为线段PB 上的点,且BD⊥AE.
(1)求证:PD∥平面 AEC;
(2)若BC∥AD,BC=$\sqrt{2}$,AD=2$\sqrt{2}$,PD=3且AB=CD.求三棱锥A-EBC 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2015)2f(x+2015)-4f(-2)>0的解集为(  )
A.(2017,+∞)B.(0,2017)C.(-∞,-2017)D.(-2017,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A(-1,0),B(1,0),如果点C在函数y=-3x2+2的图象上,那么使得△ABC为直角三角形的点C的个数为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,四边形ABCD的各顶点均在椭圆E上,且对角线AC,BD均过坐标原点O,点D(2,1),AC,BD的斜率之积为$-\frac{1}{4}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过D作直线l平行于AC.若直线l′平行于BD,且与椭圆E交于不同的两点M.N,与直线l交于点P.
(1)证明:直线l与椭圆E有且只有一个公共点;
(2)证明:存在常数λ,使得|PD|2=λ|PM|•|PN|,并求出λ的值.

查看答案和解析>>

同步练习册答案