精英家教网 > 高中数学 > 题目详情
7.复数$\frac{2}{1-i}$-2i(i为虚数单位)的共轭复数的虚部等于(  )
A.-1B.1-iC.iD.1

分析 直接利用复数代数形式的乘除运算化简,再求其共轭复数得答案.

解答 解:∵$\frac{2}{1-i}$-2i=$\frac{2(1+i)}{(1-i)(1+i)}-2i=\frac{2(1+i)}{2}-2i=1-i$,
∴复数$\frac{2}{1-i}$-2i的共轭复数为1+i,其虚部为1.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知四棱锥V-ABCD,底面ABCD是边长为2的正方形,VA⊥平面ABCD,且VA=4,则此四棱锥的侧面中,所有直角三角形的面积的和是8+4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD为菱形,PD⊥底面ABCD,E,F 分别是 AB,PC 的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)设 PD=CD=4,∠BAD=60°,求二面角 E-AF-D 大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,a,b,c分别为内角的对边,若a=$\sqrt{3}$,A=$\frac{π}{3}$,b=$\sqrt{2}$,则B=(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=log2(x+3)(x-5)的定义域是A,函数g(x)=x3+m在x∈[1,2]上的值域为B,又已知B⊆A,则实数m的取值范围是(  )
A.(-∞,-11)∪(4,+∞)B.(-11,4)C.(-4,-3)D.(-∞,-4]∪[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有关线性回归的说法,不正确的是(  )
A.相关关系的两个变量不是因果关系
B.散点图能直观地反映数据的相关程度
C.回归直线最能代表线性相关的两个变量之间的关系
D.任一组数据都有回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右支上非顶点的一点A关于原点O的对称点为B,F为其右焦点,若$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,设∠BAF=θ,且θ∈($\frac{π}{4}$,$\frac{5π}{12}$),则双曲线C离心率的取值范围是(  )
A.($\sqrt{2}$,2]B.[$\sqrt{2}$,+∞)C.($\sqrt{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足a2=2,且a5+a6+a7=18.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,n∈N*,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在三棱锥A-BCD中,AB⊥BD,AD⊥CD,M,N分别为AC,BC的中点,且△BMC为正三角形.求证:
(1)MN∥平面ABD;
(2)平面ABD⊥平面ACD.

查看答案和解析>>

同步练习册答案