精英家教网 > 高中数学 > 题目详情
设光线从点A(-2,2)出发,经过x轴反射后经过点B(0,1),则光线与x轴的交点坐标为
 
考点:与直线关于点、直线对称的直线方程
专题:直线与圆
分析:设光线与x轴的交点坐标为C(a,0),则由题意可得,直线AC和直线BC关于直线x=a对称,它们的倾斜角互补,斜率互为相反数,即 KAC=-KBC,求得a的值,可得答案.
解答: 解:设光线与x轴的交点坐标为C(a,0),则由题意可得,
直线AC和直线BC关于直线x=a对称,它们的倾斜角互补,斜率互为相反数,
即 KAC=-KBC,即 
2-0
-2-a
= -
1-0
0-a
,解得 a=-
2
3

故答案为:(-
2
3
,0).
点评:本题主要考查反射定律、对称问题的,判断直线AC和直线BC关于直线x=a对称,它们的倾斜角互补,斜率互为相反数,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的正视图是一个底边长为4、腰长为3的等腰三角形,图1、图2分别是四棱锥P-ABCD的侧视图和俯视图.求四棱锥P-ABCD的侧面PAB和PBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

?一个几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e|x|,m>1,对任意的x∈(1,m),都有f(x-2)≤ex,则最大的正整数m为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图程序运行的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,边长为2的d正方形ABCD中,E,F 分别是AB,BC的中点,将△ADE,△CDF,△BEF折起,使A,C,B二点重合于G,所得二棱锥G-DEF的俯视图如图2,则其正视图的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD,底面正方形的边长为1,侧棱长均为2,则二面角B-PC-D所成的平面角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中真命题的个数是(  )
①随机事件的概率不可能为0;
②事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大;
③掷硬币100次,结果51次出现正面,则出现正面的概率是
51
100

④互斥事件不一定是对立事件,对立事件一定是互斥事件;
⑤双曲线
x2
16
-
y2
9
=1
的渐近线方程为y=±
3
4
x
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
2-cosx
sinx
(0<x<π)的值域.

查看答案和解析>>

同步练习册答案